



# 8<sup>th</sup> Standard

## Based on the New Syllabus and Updated New Textbook

Salient Features :

- Prepared as per the updated New Textbook.
- Exhaustive Additional Questions & Answers in all chapters.
- Unit Test Question paper for each unit, with answer key.
- Government Model Question Paper 2019-20.



Chennai

2021-22 Edition © Reserved with Publishers

> ISBN : 978-93-5330-310-5 Code No. : FY-8-M

#### Author :

S. Niranjan, B.Tech., PGDM(IIM) Chennai Published by :

Mr. Subash Raj, B.E., M.S.

#### **Head Office:**

1620, 'J' Block, 16th Main Road, Anna Nagar, **Chennai - 600 040. Phones**: 044-4862 9977, 044-486 27755 **Mob** : 8124201000 / 9840926027 **e-mail :** orders @surabooks.com **website :** www.surabooks.com

| Our Guides for Std. IX                     |                                       |  |  |  |
|--------------------------------------------|---------------------------------------|--|--|--|
| TERMWISE GUIDES (for each Term)            | FULL YEAR GUIDES for 3 Terms together |  |  |  |
| Sura's Tamil Guide                         | Sura's Tamil Guide                    |  |  |  |
| Sura's English Guide                       | 🔺 Sura's English Guide                |  |  |  |
| Sura's Maths Guide (EM & TM)               | Sura's Maths Guide (EM & TM)          |  |  |  |
| Sura's Science Guide (EM & TM)             | Sura's Science Guide (EM &TM)         |  |  |  |
| Sura's Social Science Guide (EM & TM)      | Sura's Social Science Guide (EM & TM) |  |  |  |
| Sura's 5-in-1                              | 🔺 Sura's Map Workbook (EM & TM)       |  |  |  |
| with all 5 subjects in one guide (EM & TM) |                                       |  |  |  |

## **NOTE FROM PUBLISHER**

It gives me great pride and pleasure in bringing to you **Sura's Mathematics Guide** for **Full Year** for **8<sup>th</sup> Standard**. It is prepared as per the New Syllabus and New Textbook for the year 2021-22.

This guide encompasses all the requirements of the students to comprehend the text and the evaluation of the textbook.

- Additional questions have been provided exhaustively for clear understanding of the units under study.
- Chapter-wise Unit Test are given.

In order to learn effectively, I advise students to learn the subject section-wise and practice the exercises given. It will be a teaching companion to teachers and a learning companion to students.

Though these salient features are available in this Guide, I cannot negate the indispensable role of the teachers in assisting the student to understand the subject thoroughly.

I sincerely believe this guide satisfies the needs of the students and bolsters the teaching methodologies of the teachers.

I pray the almighty to bless the students for consummate success in their examinations.

Subash Raj, B.E., M.S. - Publisher Sura Publications



## **TO ORDER WITH US**

## **SCHOOLS and TEACHERS:**

We are grateful for your support and patronage to **'SURA PUBLICATIONS'** Kindly prepare your order in your School letterhead and send it to us. For Orders contact: 81242 01000 / 81243 01000

### **DIRECT DEPOSIT**

| A/c Name<br>Our A/c No.<br>Bank Name<br>Bank Branch<br>IFSC | <ul> <li>: Sura Publications</li> <li>: 36550290536</li> <li>: STATE BANK OF INDIA</li> <li>: PADI</li> <li>: SBIN0005083</li> </ul> | A/c Name:Sura PublicationsOur A/c No.:21000210001240Bank Name:UCO BANKBank Branch:Anna Nagar WestIFSC:UCBA0002100 |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| A/c Name<br>Our A/c No.<br>Bank Name<br>Bank Branch<br>IFSC | : Sura Publications<br>: 6502699356<br>: INDIAN BANK<br>: ASIAD COLONY<br>: IDIB000A098                                              | A/c Name:Sura PublicationsOur A/c No.:1154135000017684Bank Name:KVB BANKBank Branch:Anna NagarIFSC:KVBL0001154    |

After Deposit, please send challan and order to our address. email : orders@surabooks.com / Whatsapp : 81242 01000.

### **DEMAND DRAFT / CHEQUE**

Please send Demand Draft / cheque in favour of **`SURA PUBLICATIONS'** payable at **Chennai**.

The Demand Draft / cheque should be sent with your order in School letterhead.

### **STUDENTS**:

Order via Money Order (M/O) to

# **SURA PUBLICATIONS**

1620, 'J' Block, 16<sup>th</sup> Main Road, Anna Nagar, Chennai - 600 040. Phones : 044-4862 9977, 044-486 27755 Mobile : 8124201000 / 9840926027 Email : orders@surabooks.com Website : www.surabooks.com

# CONTENTS

| 1. | Numbers                                | 1 - 62    |
|----|----------------------------------------|-----------|
| 2. | Measurements                           | 63 - 94   |
| 3. | Algebra                                | 95 - 174  |
| 4. | Life Mathematics                       | 175 - 222 |
| 5. | Geometry                               | 223 - 266 |
| 6. | Statistics                             | 267 - 288 |
| 7. | Information Processing                 | 289 - 322 |
|    | Govt. Model Question Paper - 2019-2020 | 323 - 330 |

| orr                                                     | nation - Contact                      |  |  |
|---------------------------------------------------------|---------------------------------------|--|--|
| :                                                       | enquiry@surabooks.com                 |  |  |
| :                                                       | orders@surabooks.com                  |  |  |
| :                                                       | 80562 94222 / 80562 15222             |  |  |
| :                                                       | 8124201000 / 9840926027               |  |  |
| :                                                       | www.surabooks.com                     |  |  |
| For Free Study Materials Visit <b>http://tnkalvi.in</b> |                                       |  |  |
|                                                         | ) <b>r</b><br>:<br>:<br>:<br>:<br>Vis |  |  |

orders@surabooks.com





# NUMBERS

## POINTS TO REMEMBER

- A number that can be expressed in the form  $\frac{a}{b}$  where a and b are integers and  $b\neq 0$  is called a rational number.
- All natural numbers, whole numbers, integers and fractions are rational numbers.
- Every rational number can be represented on a number line.
- 0 is neither a positive nor a negative rational number.
- A rational number  $\frac{a}{b}$  is said to be in the standard form if its denominator b is a positive integer and HCF (a,b)=1
- There are unlimited numbers of rational numbers between two rational numbers.
- Subtracting two rational numbers is the same as adding the additive inverse of the second number to the first rational number.
- Multiplying two rational numbers is the same as multiplying their numerators and denominators separately and then writing the product in the standard form.
- Dividing a rational number by another rational number is the same as multiplying the first rational number by the reciprocal of the second rational number.
- $\Box$  The following table is about the properties of rational numbers( $\mathbb{Q}$ ).

| Q | Closure      | Commutative  | Associative  | Multiplication is distributive over +/- |
|---|--------------|--------------|--------------|-----------------------------------------|
| + | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                            |
| - | $\checkmark$ | ×            | ×            | $\checkmark$                            |
| × | $\checkmark$ | $\checkmark$ | $\checkmark$ | -                                       |
| ÷ | ×            | ×            | ×            | —                                       |

🛿 Sura's 👞 8th Std - Mathematics

• 0 and 1 are respectively the additive and the multiplicative identities of rational numbers.

The additive inverse for  $\frac{a}{b}$  is  $\frac{-a}{b}$  and vice – versa.

The reciprocal or the multiplicative inverse of a rational number  $\frac{a}{b}$  is  $\frac{b}{a}$  since  $\frac{a}{b} \times \frac{b}{a} = 1$ .

- A natural number *n* is called a square number, if we can find another natural number *m* such that  $n = m^2$ .
- The square root of a number *n*, written as  $\sqrt{n}$  (or)  $n^{\frac{1}{2}}$ , is the number that gives *n* when multiplied by itself.

The number of times a prime factor occurs in the square is equal to twice the number of times it occurs in the prime factorization of the number.

For any two positive numbers a and b. we have

(i) 
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$
 and (ii)  $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} (b \neq 0)$ 

If you multiply a number by itself and then by itself again, the result is a cube number.

The cube root of a number is the value that when cubed gives the original number.

An expression that represents repeated multiplication of the same factor is called a power.

\_\_\_\_\_

The exponent corresponds to the number of times the base is used as a factor.

Laws of Exponents: (i) 
$$a^m \times a^n = a^{m+n}$$
 (ii)  $\frac{a^m}{a^n} = a^{m-n}$  (iii)  $(a^m)^n = a^{mn}$   
Other results: (i)  $a^0 = 1$  (ii)  $a^{-m} = \frac{1}{a^m}$  (iii)  $a^m \times b^m = (ab)^m$  (iv)  $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^n$ 

Unit - 1 - Numbers

🖞 Sura's 🛶 8th Std - Mathematics

| Rесар                                                                        | Page No. 3                                      |
|------------------------------------------------------------------------------|-------------------------------------------------|
| <b>1.</b> The simplest form of $\frac{125}{200}$ is                          | [Ans: $\frac{5}{8}$ ]                           |
| Sol. $\frac{125}{200} = \frac{125 \div 25}{200 \div 25} = \frac{5}{8}$       |                                                 |
| 2. Which of the following is not an equivalent fraction of $\frac{8}{12}$ ?  |                                                 |
| (A) $\frac{2}{3}$ (B) $\frac{16}{24}$ (C) $\frac{32}{60}$                    | (D) $\frac{24}{36}$ [Ans: (C) $\frac{32}{60}$ ] |
| <b>Sol.</b> $\frac{8}{12} = \frac{8 \div 4}{12 \div 4} = \frac{2}{3}$        |                                                 |
| $\frac{8}{12} = \frac{8 \times 2}{12 \times 2} = \frac{16}{24}$              |                                                 |
| $\frac{8}{12} = \frac{8 \times 3}{12 \times 3} = \frac{24}{36}$              |                                                 |
| But $\frac{32}{60} = \frac{32 \div 5}{60 \div 5} = \frac{6.4}{12}$           |                                                 |
| $\therefore \frac{32}{60}$ is not an equivalent fraction of $\frac{8}{12}$ . |                                                 |
| 3. Which is bigger $\frac{4}{5}$ or $\frac{8}{9}$ ?                          |                                                 |
| <b>Sol.</b> LCM of 5 and $9 = 45$                                            |                                                 |
| $\frac{4}{5} = \frac{4 \times 9}{5 \times 9} = \frac{36}{45}$                |                                                 |
| $\frac{8}{8} = \frac{8 \times 5}{40}$                                        |                                                 |
| $9 - 9 \times 5 - 45$<br>40 - 36                                             |                                                 |
| $\therefore  \frac{10}{45}  >  \frac{30}{45}$                                |                                                 |
| $\frac{8}{9} > \frac{4}{5}$                                                  |                                                 |
| $\frac{8}{9}$ is bigger than $\frac{4}{5}$ .                                 |                                                 |

orders@surabooks.com

🖞 Sura's 🛶 8th Std - Mathematics

| nbers      | 4.   | Add the fractions : $\frac{3}{5} + \frac{5}{8} + \frac{7}{10}$          |                 |                                                                                                                                                                                   |                                                        |
|------------|------|-------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Nur        | Sol. | LCM of 5, 8, 10                                                         | =               | $5 \times 2 \times 4$                                                                                                                                                             | Hint:                                                  |
| Unit - 1 - |      | $\frac{3}{5} + \frac{5}{8} + \frac{7}{10}$                              | =               | $ \frac{(3 \times 8) + (5 \times 5) + (7 \times 4)}{40} \\ \frac{24 + 25 + 28}{40} $                                                                                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|            | 5.   | Simplify : $\frac{1}{8} - \left(\frac{1}{6} - \frac{1}{4}\right)$ .     | =               | $\frac{77}{40} = 1\frac{37}{40}$                                                                                                                                                  |                                                        |
|            | Sol. | $\frac{1}{8} - \left(\frac{1}{6} - \frac{1}{4}\right)$                  | =               | $\frac{1}{8} - \left\lfloor \frac{(1 \times 2) - (1 \times 3)}{12} \right\rfloor$ $\frac{1}{8} - \left( \frac{2 - 3}{12} \right)$ $\frac{1}{8} - \left( \frac{2 - 3}{12} \right)$ |                                                        |
|            |      |                                                                         | =               | $\frac{1}{8} - \left(-\frac{1}{12}\right)$ $\frac{1}{8} + \frac{1}{12} = \frac{(1 \times 3) + (1 \times 2)}{24}$ $3 + 2 = 5$                                                      |                                                        |
|            | 6.   | Multiply $2\frac{3}{5}$ and $1\frac{4}{7}$ .                            | =               | $\overline{24} = \overline{24}$                                                                                                                                                   |                                                        |
|            | Sol. | $2\frac{3}{5} \times 1\frac{4}{7}$                                      | =               | $\frac{13}{5} \times \frac{11}{7} = \frac{143}{35} = 4\frac{3}{35}$                                                                                                               |                                                        |
|            | 7.   | Divide $\frac{1}{36}$ by $\frac{1}{81}$ .                               |                 |                                                                                                                                                                                   |                                                        |
|            | Sol. | $\frac{7}{36} \div \frac{35}{81}$                                       | =               | $\frac{7}{36} \times \frac{81}{35} = \frac{9}{20}$                                                                                                                                |                                                        |
|            | 8.   | Fill in the boxes : $\frac{\Box}{66} = \frac{70}{\Box} = \frac{24}{44}$ | $\frac{8}{4} =$ | $\frac{\Box}{121} = \frac{7}{\Box}.$                                                                                                                                              |                                                        |
|            | Sol. | $\frac{28}{44}$                                                         | =               | $\frac{28 \div 4}{44 \div 4} = \frac{7}{11}$                                                                                                                                      |                                                        |
|            |      | $\frac{7}{11}$                                                          | =               | $\frac{28}{44} = \frac{42}{66} = \frac{70}{110} = \frac{77}{121}$                                                                                                                 |                                                        |
|            |      | <u>42</u><br>66                                                         | =               | $\frac{70}{\boxed{110}} = \frac{28}{44} = \frac{\boxed{77}}{121} = \frac{7}{\boxed{11}}.$                                                                                         |                                                        |

🖞 Sura's 🛶 8th Std - Mathematics



**1.**  $\frac{4}{5}$  =  $\frac{4 \times 20}{5 \times 20} = \frac{80}{100} = 0.80$ **2.**  $\frac{6}{25}$  =  $\frac{6 \times 4}{25 \times 4} = \frac{24}{100} = 0.24$ 

|                    | 🗘 Sura's 🛶 8th Std - Mathematics |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Unit - 1 - Numbers | 3.<br>4.                         | $\frac{486}{1000}$<br>$\frac{1}{9}$                           | $= 0.486$ $= 0.119) \underbrace{\begin{array}{c} 0.11\\ 9\end{array}}_{10} \underbrace{\begin{array}{c} 9\\ 9\end{array}}_{10} \\ 9\\ 1\end{array}$                                                                                                                                                                                                                                                                  | $\frac{-2}{5} = \frac{-2 \times -3}{5 \times -3} = \frac{6}{-15}$ $\frac{-2}{5} = \frac{-2 \times 4}{5 \times 4} = \frac{-8}{20}$ $\therefore \frac{-2}{5} = \frac{-4}{10} = \frac{6}{-15} = \frac{-8}{20}$ $()$ Try these Page No. 7                                                                                                                                                                                                                            |  |
|                    | 5.                               | $3\frac{1}{4}$                                                | $= \frac{13}{4} = 3.25$ $4) \frac{3.25}{13}$ $\frac{12}{10}$ $\frac{8}{20}$ $\frac{20}{0}$                                                                                                                                                                                                                                                                                                                           | 1. Which of the following pairs represents<br>equivalent rational numbers?<br>(i) $\frac{-6}{4}, \frac{18}{-12}$ (ii) $\frac{-4}{-20}, \frac{1}{-5}$<br>(iii) $\frac{-12}{-17}, \frac{60}{85}$                                                                                                                                                                                                                                                                   |  |
|                    | 6.                               | $-2\frac{3}{5}$                                               | $= \frac{-13}{5} = -2.6 \qquad 5 \frac{2.6}{13} \frac{10}{30} \frac{30}{0}$<br>THESE Page No. 6                                                                                                                                                                                                                                                                                                                      | (i) $\frac{-6}{4} = \frac{-6 \times 3}{4 \times 3} = \frac{-18}{12}$<br>$\therefore \frac{-6}{4}$ equivalent to $\frac{-18}{12}$<br>(ii) $\frac{-4}{-20} = \frac{-4 \div (-4)}{-20 \div (-4)} = \frac{1}{5} \neq -\frac{1}{5}$<br>$\therefore \frac{-4}{-20}$ not equivalent to $\frac{1}{-5}$                                                                                                                                                                   |  |
|                    | 1.                               | $\frac{7}{3} = \frac{?}{9} =$<br>$\frac{-2}{5} = \frac{2}{1}$ | $=\frac{49}{2} = \frac{-21}{2}$ $\frac{7}{3} = \frac{7 \times 3}{3 \times 3} = \frac{21}{9}$ $\frac{7}{3} = \frac{7 \times 7}{3 \times 7} = \frac{49}{21}$ $\frac{7}{3} = \frac{7 \times (-3)}{3 \times (-3)} = \frac{-21}{-9}$ $\therefore \frac{7}{3} = \frac{21}{9} = \frac{49}{21} = \frac{-21}{-9}$ $\frac{2}{10} = \frac{6}{2} = \frac{-8}{2}$ $\frac{-2}{5} = \frac{-2 \times 2}{5 \times 2} = \frac{-4}{10}$ | (iii) $\frac{-12}{-17} = \frac{-12 \times -5}{-17 \times -5} = \frac{60}{85}$<br>$\therefore \frac{-12}{-17}$ equivalent to $\frac{60}{85}$<br>2. Find the standard form of :<br>(i) $\frac{36}{-96}$ (ii) $\frac{-56}{-72}$ (iii) $\frac{27}{18}$<br>(i) $\frac{36}{-96} = \frac{-36 \div 12}{96 \div 12} = \frac{-3}{8}$<br>(ii) $\frac{-56}{-72} = \frac{-56 \div (-8)}{-72 \div (-8)} = \frac{7}{9}$<br>(iii) $\frac{27}{18} = 1\frac{9}{18} = 1\frac{1}{2}$ |  |

orders@surabooks.com

6



🖞 Sura's 🛶 8th Std - Mathematics

Exercise 1.1

| 1.   | Fill i        | in the blanks:                                                                             |                                                  |                          |
|------|---------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|
|      | (i)           | $\frac{-19}{5}$ lies between the integers and                                              | ·                                                | [ <b>Ans:</b> –4 and –3] |
|      | (ii)          | The decimal form of the rational number $\frac{15}{-4}$                                    | is                                               | [Ans: -3.75]             |
|      | (iii)         | The rational numbers $\frac{-8}{3}$ and $\frac{8}{3}$ are equidist                         | ant from                                         | [Ans: 0]                 |
|      | (iv)          | The next rational number in the sequence $\frac{-1}{2^2}$                                  | $\frac{5}{4}, \frac{20}{-32}, \frac{-25}{40}$ is | [Ans: $\frac{30}{-48}$ ] |
|      | (v)           | The standard form of $\frac{58}{-78}$ is                                                   |                                                  | [Ans: $\frac{-29}{39}$ ] |
| 2.   | Say '         | True or False.                                                                             |                                                  |                          |
|      | (i)           | 0 is the smallest rational number.                                                         |                                                  | [Ans: False]             |
|      | (ii)          | $\frac{-4}{5}$ lies to the left of $\frac{-3}{4}$                                          |                                                  | [Ans: True]              |
|      | (iii)         | $\frac{-19}{5}$ is greater than $\frac{15}{-4}$                                            |                                                  | [Ans: False]             |
|      | (iv)          | The average of two rational numbers lies bet                                               | tween them.                                      | [Ans: True]              |
|      | (v)           | There are an unlimited number of rational number                                           | umbers between 10 and                            | 11. [Ans: True]          |
| 3.   | Find<br>follo | the rational numbers represented by eac<br>wing number line.                               | h of the question mar                            | ks marked on the         |
|      | (i)<br>(ii)   | -4 $-3$ $-2$ ?<br>-3 $-2$ $-1$                                                             | -1 0<br>0 1                                      | 1<br>? 2                 |
|      | (iii)         |                                                                                            |                                                  |                          |
| Sol. | (i)           | The number lies between $-3$ and $-4$ . The u 3 equal parts and the second part is asked.  | nit part between –3 and                          | d - 4 is divided into    |
|      |               | $\therefore$ The required number is $-3\frac{2}{2} = -\frac{11}{2}$ .                      |                                                  |                          |
|      | ( <b>ii</b> ) | The required number lies between 0 and $-1$ into 5 equal parts, and the second part is tal | . The unit part between ken.                     | 0  and  -1  is divided   |
|      |               | $\therefore$ The required number is $-\frac{2}{5}$                                         |                                                  |                          |
| 8    | orde          | ers@surabooks.com                                                                          | Ph: 9600175757 / 8                               | 124201000                |

## 🖞 Sura's 🛶 8th Std - Mathematics

(iii) The required number lies between 1 and 2. The unit part between 1 and 2 is divided into 4 equal parts and the third part is taken.

$$\therefore$$
 The required number is  $1\frac{3}{4} = \frac{7}{4}$ 

4. The points S, Y, N, C, R, A, T, I and O on the number line are such that CN=NY=YS and RA=AT=TI=IO. Find the rational numbers represented by the letters Y, N, A, T and I.

Solve 
$$X = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}$$

5. Draw the number line and represent the following rational numbers on it.

17

(i) 
$$\frac{9}{4}$$
 (ii)  $\frac{-8}{3}$  (iii)  $\frac{-17}{-5}$  (iv)  $\frac{15}{-4}$   
Sol (i)  $\frac{9}{4} = 2\frac{1}{4}$   
 $\therefore \frac{9}{4}$  lies between 2 and 3.  
(ii)  $\frac{-8}{3} = -2\frac{2}{3}$   
 $-2\frac{2}{3}$  lies between -2 and -3.  
 $-2\frac{2}{3} = \frac{-8}{3}$   
 $-4\frac{1}{-3} -2\frac{1}{-2} -1$  0 1 2 3 4

•

**Unit - 1 - Numbers** 

6.



Sol. (i) 
$$\frac{1}{11} = 0.0909...$$
 (ii)  $\frac{13}{4} = 3.2$   
 $11) \underbrace{\begin{array}{c} 0.0909\\110\\ 99\\100\\ 99\\1\\1\end{array}}_{12}$ 
 $10\\ \frac{8}{20}\\20\\0\end{array}$ 

|       | 🗘 Sur                                                                                     | a's 🛶 8th S                                                 | td - Mathematics                                     |  |
|-------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--|
| (iii) | $\frac{-18}{7} = -2.571428571428.$                                                        |                                                             | (iv) $1\frac{2}{5} = \frac{7}{5} = 1.4$              |  |
|       | $7) \begin{array}{c} 2.571428 \\ 14 \\ 40 \\ 35 \\ 50 \\ 49 \\ 10 \\ 7 \\ 30 \end{array}$ |                                                             | $5) \frac{1.4}{7} \\ -\frac{5}{20} \\ -\frac{20}{0}$ |  |
|       | $     \frac{28}{20} \\     \frac{14}{60} \\     \frac{56}{4} \\     1 \\     7 $          |                                                             |                                                      |  |
| (v)   | $-3\frac{1}{2} = -\frac{7}{2} = -3.5$                                                     | $2)\overline{\begin{array}{c}3.5\\7\\6\\10\\10\end{array}}$ |                                                      |  |

7. List any five rational numbers between the given rational numbers.

(i) -2 and 0 (ii)  $\frac{-1}{2}$  and  $\frac{3}{5}$  (iii)  $\frac{1}{4}$  and  $\frac{7}{20}$  (iv)  $\frac{-6}{4}$  and  $\frac{-23}{10}$ Sol (i) -2 and 0 i.e.  $\frac{-2}{1}$  and  $\frac{0}{1}$   $\frac{-2}{1} = \frac{-2 \times 10}{1 \times 10} = \frac{-20}{10}$   $\frac{0}{1} = \frac{0 \times 10}{1 \times 10} = \frac{0}{10}$   $\therefore$  Five rational numbers between  $\frac{-20}{10} (= -2)$  and  $\frac{0}{10} (= 0)$  are  $\frac{-20}{10}, \frac{-19}{10}, \frac{-18}{10}, \frac{-7}{10}, \frac{-6}{10}, \frac{-5}{10}, \frac{0}{10} (= 0)$ . (ii)  $\frac{-1}{2}$  and  $\frac{3}{5}$ LCM of 2 and 5 =  $2 \times 5 = 10$ 

$$-\frac{1}{2} = \frac{-1 \times 5}{2 \times 5} = \frac{-5}{10}$$

orders@surabooks.com

🖑 Sura's 🛶 8th Std - Mathematics  $\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}$ :. Five rational numbers between  $\frac{-1}{2} \left(=\frac{-5}{10}\right)$  and  $\frac{3}{5} \left(=\frac{6}{10}\right)$  are  $\frac{-3}{10}, \frac{-1}{10}, 0, \frac{1}{10}, \frac{2}{10}, \frac{5}{10}$ (iii)  $\frac{1}{4}$  and  $\frac{7}{20}$  $\frac{1}{4} = \frac{1 \times 15}{4 \times 15} = \frac{15}{60}$  $\frac{7}{20} = \frac{7 \times 3}{20 \times 3} = \frac{21}{60}$ : Five rational numbers between  $\frac{1}{4} \left( = \frac{15}{60} \right)$  and  $\frac{7}{20} \left( = \frac{21}{60} \right)$  are  $\frac{16}{60}, \frac{17}{60}, \frac{18}{60}, \frac{19}{60}, \frac{20}{60} \right)$ (iv)  $\frac{-6}{4}$  and  $\frac{-23}{10}$  $\frac{-6}{4} = \frac{-6 \times 5}{4 \times 5} = \frac{-30}{20}$  $\frac{-23}{10} = \frac{23 \times 2}{10 \times 2} = \frac{-46}{20}$ :. Five rational numbers between  $\frac{-6}{4} \left(=\frac{-30}{20}\right)$  and  $\frac{-23}{10} \left(=\frac{-46}{20}\right)$  are  $\frac{-31}{20}, \frac{-32}{20}, \frac{-33}{20}, \frac{-34}{20}, \frac{-35}{20}$ . Use the method of average to write 2 rational numbers between  $\frac{14}{5}$  and  $\frac{16}{2}$ . 8. The average of *a* and *b* is  $\frac{1}{2}(a+b)$ Sol. The average of  $\frac{14}{5}$  and  $\frac{16}{3}$  is  $C_1 = \frac{1}{2} \left( \frac{14}{5} + \frac{16}{3} \right)$  $C_{1} = \frac{1}{2} \left( \frac{42 + 80}{15} \right)$  $C_{1} = \frac{122}{30}$  $C_1 = \frac{61}{15}$  $\frac{14}{5} < \frac{61}{15} < \frac{16}{3}$ .....(1) The average of  $\frac{14}{5}$  and  $\frac{61}{15}$  is  $C_2 = \frac{1}{2} \left( \frac{14}{5} + \frac{61}{15} \right)$  $C_2 = \frac{1}{2} \times \left(\frac{42+61}{15}\right)$  $C_2 = \frac{1}{2} \times \frac{103}{15} = \frac{103}{20}$ 

12

**Unit - 1 - Numbers** 

| (2) |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

|            |      |               | 🗊 Sura's 👞 8th Std - Mathematics                                                                                                                              |                                                                    |
|------------|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ຼ          | 10.  | Arra          | ange the following rational numbers in ascending and descen                                                                                                   | ding order.                                                        |
| <b>b</b> e |      | (*) -         | -5 -11 -15 -7 1217 -7 0 -2 -19                                                                                                                                |                                                                    |
| m          |      | (I) -<br>1    | $\overline{12}, \overline{8}, \overline{24}, \overline{-9}, \overline{36}$ (11) $\overline{10}, \overline{5}, 0, \overline{4}, \overline{20}$                 |                                                                    |
| Ž          |      | (*)           | -5 -11 -15 -7 12                                                                                                                                              |                                                                    |
| -          | Sol. | (i)           | $\overline{12}, \overline{8}, \overline{24}, \overline{-9}, \overline{36}$                                                                                    | Hint:                                                              |
| 4          |      |               | LCM of 12, 8, 24, 9, 36 is $4 \times 3 \times 2 \times 3 = 72$                                                                                                | 4 12, 8, 24, 9, 36                                                 |
| Jni        |      |               | $-5$ $-5 \times 6$ $-30$                                                                                                                                      | 3 3, 2, 6, -9, 9                                                   |
|            |      |               | $\frac{1}{12} = \frac{1}{12 \times 6} = \frac{1}{72}$                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$              |
|            |      |               | -11 -11×9 -99                                                                                                                                                 | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ |
|            |      |               | $\frac{1}{8} = \frac{1}{8 \times 9} = \frac{1}{72}$                                                                                                           | 1, 1, 1, 1, 1                                                      |
|            |      |               | $\frac{-15}{-15}$ $\frac{-15 \times 3}{-45}$                                                                                                                  |                                                                    |
|            |      |               | 24 <sup>-</sup> 24×3 <sup>-</sup> 72                                                                                                                          |                                                                    |
|            |      |               | $\frac{-7}{-7} = \frac{7 \times 8}{-7} = \frac{56}{-7}$                                                                                                       |                                                                    |
|            |      |               | -9 9×8 72                                                                                                                                                     |                                                                    |
|            |      |               | $\frac{12}{12} = \frac{12 \times 2}{12} = \frac{24}{12}$                                                                                                      |                                                                    |
|            |      |               | 36 36×2 72                                                                                                                                                    |                                                                    |
|            |      |               | Now comparing the numerators $-30, -99, -45, 56, 24$ we get 56                                                                                                | > 24 > -30 > -45 > -99                                             |
|            |      |               | i.e $\frac{56}{72} > \frac{24}{72} > \frac{-30}{72} > \frac{-45}{72} > \frac{-99}{72}$ and so $\frac{-7}{-9} > \frac{12}{36} > \frac{-5}{12} > \frac{-5}{12}$ | $\frac{-15}{24} > \frac{-11}{8}$                                   |
|            |      |               | : Descending order $\frac{-7}{-7} > \frac{12}{-5} > \frac{-15}{-15} > \frac{-11}{-11}$                                                                        |                                                                    |
|            |      |               | $-9^{\circ} 36^{\circ} 12^{\circ} 24^{\circ} 8$                                                                                                               |                                                                    |
|            |      |               | Ascending order $\frac{-11}{8} < \frac{-15}{24} < \frac{-5}{12} < \frac{12}{36} < \frac{-7}{-9}$                                                              |                                                                    |
|            |      |               | -17 -7 -2 -19                                                                                                                                                 | Hint:                                                              |
|            |      | ( <b>ii</b> ) | $\frac{17}{10}, \frac{7}{5}, 0, \frac{2}{4}, \frac{15}{20}$                                                                                                   | 5 10, 5, 4, 20                                                     |
|            |      |               | LCM of 10, 5, 4, 20 is $5 \times 2 \times 2 = 20$                                                                                                             | $\begin{array}{c} 3 \\ 2 \\ 1 \\ 1 \\ 2 \end{array}$               |
|            |      |               | $-17$ $-17 \times 2$ $-34$                                                                                                                                    |                                                                    |
|            |      |               | $\frac{17}{10} = \frac{17\times2}{10\times2} = \frac{51}{20}$                                                                                                 | -, -, -, -                                                         |
|            |      |               | $-7$ $-7 \times 4$ $-28$                                                                                                                                      |                                                                    |
|            |      |               | $\frac{1}{5} = \frac{1}{5 \times 4} = \frac{1}{20}$                                                                                                           |                                                                    |
|            |      |               | $-2$ $-2 \times 5$ $-10$                                                                                                                                      |                                                                    |
|            |      |               | $\frac{1}{4} = \frac{1}{4 \times 5} = \frac{1}{20}$                                                                                                           |                                                                    |
|            |      |               | $\frac{-19}{-19} = \frac{-19}{-19}$                                                                                                                           |                                                                    |
|            |      |               | 20 20<br>Nagative numbers are less than zero                                                                                                                  |                                                                    |
|            |      |               | $\therefore$ Arranging the numerators we get $-34 \le -28 \le -19 \le -10 \le$                                                                                | 0                                                                  |
|            |      |               | -34 $-28$ $-19$ $-10$                                                                                                                                         | -                                                                  |
|            |      |               | $\therefore \frac{1}{20} < \frac{1}{20} < \frac{1}{20} < \frac{1}{20} < \frac{1}{20} < 0$                                                                     |                                                                    |
|            |      |               |                                                                                                                                                               |                                                                    |
|            |      |               | Ascending order = $\frac{10}{10} < \frac{5}{5} < \frac{10}{20} < \frac{1}{4} < 0$                                                                             |                                                                    |
|            |      |               | Descending order $0 > \frac{-2}{4} > \frac{-19}{20} > \frac{-7}{5} > \frac{-17}{10}$                                                                          |                                                                    |
|            | 14   |               | т 20 J 10                                                                                                                                                     |                                                                    |

orders@surabooks.com

Sura's 🛶 8th Std - Mathematics

## **OBJECTIVE TYPE QUESTIONS**

11. The number which is subtracted from  $\frac{-6}{11}$  to get  $\frac{8}{9}$  is

(A) 
$$\frac{34}{99}$$
 (B)  $\frac{-142}{99}$  (C)  $\frac{142}{99}$ 

Hint:

Let *x* be the number to be subtracted

$$\frac{-6}{11} - x = \frac{8}{9}$$
$$\frac{-6}{11} - \frac{8}{9} = x$$
$$x = \frac{(-6 \times 9) + (-8 \times 11)}{11 \times 9} = \frac{-54 + (-88)}{99} = \frac{-142}{99}$$

#### **12.** Which of the following pairs is equivalent?

(A) 
$$\frac{-20}{12}, \frac{5}{3}$$
 (B)  $\frac{16}{-30}, \frac{-8}{15}$  (C)  $\frac{-18}{36}, \frac{-20}{44}$  (D)  $\frac{7}{-5}, \frac{-5}{7}$   
[Ans: (B)  $\frac{16}{-30}, \frac{-8}{15}$ ]  
Hint:  $\frac{-20}{-30} = \frac{-20 \div 4}{-30} = \frac{-5}{5} \neq \frac{5}{7}$ 

$$\frac{-20}{12} = \frac{-20 \div 4}{12 \div 4} = \frac{-5}{3} \neq \frac{5}{3}$$
$$\frac{16}{-30} = \frac{-16 \div 2}{30 \div 2} = \frac{-8}{15}$$
$$\frac{-18}{36} = \frac{-18 \div 9}{36 \div 9} = \frac{-2}{4} = \frac{-2 \times 11}{4 \times 11} = \frac{-22}{44} \neq \frac{-20}{44}$$

 $\therefore \frac{16}{-30}$  and  $\frac{-8}{15}$  are equivalent fraction.

13.  $\frac{-5}{4}$  is a rational number which lies between\_\_\_\_\_. (A) 0 and  $\frac{-5}{4}$  (B) -1 and 0 (C) -1 and -2 (D) -4 and -5

[Ans: (C) –1 and –2]

(D)  $\frac{-34}{99}$ [Ans: (B)  $\frac{-142}{99}$ ]

#### Hint:

$$\frac{-5}{4} = -1\frac{1}{4}$$
  
$$\therefore \frac{-5}{4} \text{ lies between } -1 \text{ and } -2.$$

#### 14. Which of the following rational numbers is the greatest?

(A) 
$$\frac{-17}{24}$$
 (B)  $\frac{-13}{16}$  (C)  $\frac{7}{-8}$  (D)  $\frac{-31}{32}$   
**Hint:** LCM of 24, 16, 8,  $32 = 8 \times 2 \times 3 \times 2 = 96$   
 $\frac{-17}{24} = \frac{-17 \times 4}{24 \times 4} = \frac{-68}{96}$ 
(D)  $\frac{-31}{32}$ 
[Ans: (A)  $\frac{-17}{24}$ ]

|                    | 🗘 Sura's 🛶 8th Std - Mathematics                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Unit - 1 - Numbers | $\frac{-13}{16} = \frac{-13 \times 6}{16 \times 6} = \frac{-78}{96}$ $\frac{7}{-8} = \frac{-7 \times 12}{8 \times 12} = \frac{-84}{96}$ $\frac{-31}{32} = \frac{-31 \times 3}{32 \times 3} = \frac{-93}{96}$ $\frac{-93}{96} < \frac{-84}{96} < \frac{-78}{96} < \frac{-68}{96}$ $\frac{-31}{32} < \frac{7}{-8} < \frac{-13}{16} < \frac{-17}{24}$ $\therefore \frac{-17}{24} \text{ is the greatest number.}$ | 8 24, 16, 8, 32<br>2 3, 2, 1, 4<br>3 3, 1, 1, 2<br>1, 1, 1, 2<br>1, 1, 1, 1<br>112 |
|                    | <b>15.</b> The sum of the digits of the denominator in the simplest form                                                                                                                                                                                                                                                                                                                                       | of $\frac{112}{528}$ is                                                            |
|                    | (A) 4 (B) 5 (C) 6<br>Hint: $\frac{112}{528} = \frac{112 \div 8}{528 \div 8} = \frac{14}{66} = \frac{14 \div 2}{66 \div 2} = \frac{7}{33}$                                                                                                                                                                                                                                                                      | (D) 7 [ <i>Ans:</i> (C) 6]                                                         |
|                    | Sum of digits in the denominator $= 3 + 3 = 6$                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |
|                    | 7 Тнімк                                                                                                                                                                                                                                                                                                                                                                                                        | Page No. 15 & 16                                                                   |
|                    | Is zero a rational number? If so, what is its additive inverse?<br>Sol. Yes zero is a national number. Additive inverse of zero is zero.                                                                                                                                                                                                                                                                       |                                                                                    |
|                    | What is the multiplicative inverse of 1 and -1?<br>Sol. Multiplicative inverse of 1 is 1 and -1 is -1.                                                                                                                                                                                                                                                                                                         |                                                                                    |
|                    | TRY THESE                                                                                                                                                                                                                                                                                                                                                                                                      | Page No. 16                                                                        |
|                    | Divide : (i) $\frac{-7}{3}$ by 5 (ii) 5 by $\frac{-7}{3}$ (iii) $\frac{-7}{3}$ by $\frac{35}{6}$<br>Sol. (i) $\frac{-7}{3} \div 5 = \frac{-7}{3} \div \frac{5}{1} = \frac{-7}{3} \times \frac{1}{5} = \frac{-7}{15}$                                                                                                                                                                                           |                                                                                    |
|                    | (ii) $5 \div \left(\frac{-7}{3}\right) = \frac{5}{1} \times \frac{3}{-7} = \frac{15}{-7} = -2\frac{1}{7}$                                                                                                                                                                                                                                                                                                      |                                                                                    |
|                    | (iii) $\frac{-7}{3} \div \frac{35}{62} = \frac{-7}{3} \times \frac{5}{5} = -\frac{2}{5}$                                                                                                                                                                                                                                                                                                                       |                                                                                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |

🖞 Sura's 🛶 8th Std - Mathematics

# Exercise 1.2

| 1.   | Fill in the blanks:                                                                                                                                                  |                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|      | (i) The value of $\frac{-5}{12} + \frac{7}{15} = $                                                                                                                   | [ <i>Ans</i> : $\frac{1}{20}$ ] |
|      | (ii) The value of $\left(\frac{-3}{6}\right) \times \left(\frac{18}{-9}\right)$ is                                                                                   | [Ans: 1]                        |
|      | (iii) The value of $\left(\frac{-15}{23}\right) \div \left(\frac{30}{-46}\right)$ is                                                                                 | [Ans: 1]                        |
|      | (iv) The rational number does not have a reciprocal.                                                                                                                 | [Ans: 0]                        |
|      | (v) The multiplicative inverse of $-1$ is                                                                                                                            | [Ans: -1]                       |
| 2.   | Say True or False.                                                                                                                                                   |                                 |
|      | <ul><li>(i) All rational numbers have an additive inverse.</li><li>(ii) The rational numbers that are equal to their additive inverses are 0 and -1</li></ul>        | [Ans: True]<br>[. [Ans: False]  |
|      | (iii) The additive inverse of $\frac{-11}{-17}$ is $\frac{11}{17}$ .                                                                                                 | [Ans: False]                    |
|      | <ul><li>(iv) The rational number which is its own reciprocal is -1.</li><li>(v) The multiplicative inverse exists for all rational numbers.</li></ul>                | [Ans: True]<br>[Ans: False]     |
| 3.   | Find the sum :                                                                                                                                                       |                                 |
|      | (i) $\frac{7}{5} + \frac{3}{5}$ (ii) $\frac{7}{5} + \frac{5}{7}$ (iii) $\frac{6}{5} + \left(\frac{-14}{15}\right)$ (iv) $-4\frac{2}{3} + 7\frac{5}{12}$              |                                 |
| Sol. | (i) $\frac{7}{5} + \frac{3}{5} = \frac{7+3}{5} = \frac{10}{5} = 2$                                                                                                   |                                 |
|      | (ii) $\frac{7}{5} + \frac{5}{7} = \frac{7 \times 7 + 5 \times 5}{35} = \frac{49 + 25}{35} = \frac{74}{35}$                                                           |                                 |
|      | (iii) $\frac{6}{5} + \left(\frac{-14}{15}\right) = \frac{6 \times 3 + (14)}{15} = \frac{18 + (-14)}{5} = \frac{4}{5}$                                                |                                 |
|      | (iv) $-4\frac{2}{3}+7\frac{5}{12} = \frac{14}{3}+\frac{18}{12}=\frac{-14\times4+89}{12}=\frac{-56+89}{12}=\frac{-33}{12}=\frac{-11}{4}$                              |                                 |
| 4.   | Subtract : $\frac{-8}{44}$ from $\frac{-17}{11}$ .                                                                                                                   |                                 |
| Sol. | $\frac{-17}{11} - \left(\frac{-8}{44}\right) = \frac{-17}{11} + \frac{8}{44} = \frac{-17 \times 4 + 8}{44} = \frac{-68 + 8}{44} = \frac{\frac{1}{64}}{\frac{1}{44}}$ | $\frac{6}{4} = \frac{-15}{11}$  |
|      |                                                                                                                                                                      |                                 |

|              |      |               | 💟 Sura's 👞 8th Std - Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|--------------|------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| nbers        | 5.   | Eval          | aluate : (i) $\frac{9}{132} \times \frac{-11}{3}$ (ii) $\frac{-7}{27} \times \frac{24}{-35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| it - 1 - Nun | Sol. | (i)           | $\frac{\cancel{\cancel{3}}}{\cancel{\cancel{3}}}_{\substack{\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{\cancel{3}}\\\cancel{3}\\3$ |            |
| Ū            |      | ( <b>ii</b> ) | $\frac{-7}{27} \times \frac{24}{-35} = \frac{8}{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|              | 6.   | Divi          | ide: (i) $\frac{-21}{5}$ by $\frac{-7}{-10}$ (ii) $\frac{-3}{13}$ by $-3$ (iii) $-2$ by $\frac{-6}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|              | Sol. | (i)           | $\frac{-21}{5} \div \frac{-7}{-10} = \frac{\frac{3}{21}}{\cancel{5}} \times \frac{\cancel{10}}{\cancel{7}} = -6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|              |      | ( <b>ii</b> ) | $\frac{-3}{13} \div -3 = \frac{-3}{13} \times \frac{-1}{3} = \frac{-3 \times -1}{13 \times 3} = \frac{3}{39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|              |      | (iii)         | $-2 \div \frac{-6}{15} = -2 \times \frac{15}{-6} = \frac{-2 \times 15}{-6} = \frac{-30}{-6} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|              | 7.   | Find          | d $(a+b) \div (a-b)$ if (i) $a = \frac{1}{2}, b = \frac{2}{3}$ (ii) $a = \frac{-3}{5}, b = \frac{2}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|              | Sol. | (i)           | $a+b = \frac{1}{2} + \frac{2}{3} = \frac{1 \times 3 + 2 \times 2}{6} = \frac{3+4}{6} = \frac{7}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|              |      |               | $a-b = \frac{1}{2} - \frac{2}{3} = \frac{1 \times 3 - 2 \times 2}{6} = \frac{3-4}{6} = \frac{-1}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|              |      |               | $(a+b) \div (a-b) = \frac{7}{6} \div \frac{-1}{6} = \frac{7}{\cancel{6}} \times \frac{\cancel{6}}{-1} = -7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|              |      | ( <b>ii</b> ) | $a+b = \frac{-3}{5} + \frac{2}{15} = \frac{-3 \times 3 + 2}{15} = \frac{-9 + 2}{15} = \frac{-7}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|              |      |               | $a-b = \frac{-3}{5} - \frac{2}{15} = \frac{-3 \times 3 - 2}{15} = \frac{-9 - 2}{15} = \frac{-11}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|              |      |               | $(a+b) \div (a-b) = \frac{-7}{15} \div \frac{-11}{15} = \frac{-7}{15} \times \frac{15}{-11} = \frac{7}{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|              | 8.   | Sim           | uplify: $\frac{1}{2} + \left(\frac{3}{2} - \frac{2}{5}\right) \div \frac{3}{10} \times 3$ and show that it is a rational number between $\frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l1 and 12. |
|              | Sol. |               | $\frac{1}{2} + \left(\frac{3}{2} - \frac{2}{5}\right) \div \frac{3}{10} \times 3 = \frac{1}{2} + \left(\frac{15 - 4}{10}\right) \div \frac{3}{10} \times 3 = \frac{1}{2} + \frac{11}{10} \times \frac{10}{\cancel{3}} \times \cancel{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |

 $= \frac{1}{2} + 11 = 11\frac{1}{2} = \frac{23}{2}$ 

orders@surabooks.com

18

🖤 Sura's 🛶 8th Std - Mathematics

- 9. Simplify: (i)  $\left[\frac{11}{8} \times \left(\frac{-6}{33}\right)\right] + \left[\frac{1}{3} + \left(\frac{3}{5} \div \frac{9}{20}\right)\right] - \left[\frac{4}{7} \times \frac{-7}{5}\right]$ (ii)  $\left[\frac{4}{3} \div \left(\frac{8}{-7}\right)\right] - \left[\frac{3}{4} \times \frac{4}{3}\right] + \left[\frac{4}{3} \times \left(\frac{-1}{4}\right)\right]$ Sol. (i)  $\left[\frac{11}{8} \times \left(\frac{-6}{33}\right)\right] + \left[\frac{1}{3} \div \left(\frac{3}{5} \div \frac{9}{20}\right)\right] - \left[\frac{4}{7} \times \frac{-7}{5}\right] = \frac{\cancel{11} \times \left(-\frac{\cancel{5}}{\cancel{5}}\right)}{\cancel{\cancel{5}} \times \cancel{\cancel{5}}} + \left[\frac{1}{3} \div \left(\frac{\cancel{\cancel{5}}}{\cancel{\cancel{5}}} \times \frac{\cancel{\cancel{5}}}{\cancel{\cancel{5}}}\right)\right] - \left[\frac{4 \times -\cancel{\cancel{7}}}{\cancel{\cancel{7}} \times 5}\right]$   $= -\frac{1}{4} \div \left[\frac{1}{3} \div \frac{4}{3}\right] - \left(\frac{-4}{5}\right) = -\frac{1}{4} \div \frac{5}{3} \div \frac{4}{5} = \frac{-15 \pm 100 \pm 48}{60} = \frac{133}{60}$ (ii)  $\left[\frac{4}{3} \div \left(\frac{8}{-7}\right)\right] - \left[\frac{3}{4} \times \frac{4}{3}\right] \div \left[\frac{4}{3} \times \left(\frac{-1}{4}\right)\right] = \left[\frac{\cancel{\cancel{4}}}{3} \times \frac{-7}{\cancel{\cancel{5}}}\right] - \left[\frac{\cancel{\cancel{5}}}{\cancel{\cancel{4}}} \times \frac{\cancel{\cancel{4}}}{\cancel{\cancel{5}}}\right] \div \left[\frac{\cancel{\cancel{4}} \times \left(-1\right)}{3 \times \cancel{\cancel{4}}}\right]_{5}$   $= \left(\frac{-7}{6}\right) - 1 \div \left(\frac{-1}{3}\right) = \frac{-7 - 6 \div \left(-2\right)}{6} = \frac{-\cancel{\cancel{5}}}{\cancel{\cancel{5}}} = \frac{-5}{2}$
- 10. A student had multiplied a number by  $\frac{4}{3}$  instead of dividing it by  $\frac{4}{3}$  and got 70 more than the correct answer. Find the number.

Let the number = a

$$a \times \frac{4}{3} - a \div \frac{4}{3} = 70$$

$$a \times \frac{4}{3} - a \times \frac{3}{4} = 70$$

$$a \left[\frac{4}{3} - \frac{3}{4}\right] = 70$$

$$\left[\frac{4 \times 4 - 3 \times 3}{12}\right] = 70$$

$$a \left[\frac{16 - 9}{12}\right] = 70$$

$$a \left[\frac{16 - 9}{12}\right] = 70$$

$$a = \frac{7}{10} \times \frac{12}{12} = 120$$

$$a = 120$$

## **OBJECTIVE TYPE QUESTIONS**

а

11. The standard form of the sum  $\frac{3}{4} + \frac{5}{6} + \left(\frac{-7}{12}\right)$  is \_\_\_\_\_. (A) 1 (B)  $\frac{-1}{2}$  (C)  $\frac{1}{12}$  (D)  $\frac{1}{22}$  [Ans: (A) 1] Hint:  $\frac{3}{4} + \frac{5}{6} + \left(\frac{-7}{12}\right) = \frac{(3 \times 3) + (5 \times 2) + (-7)}{12} = \frac{9 + 10 + (-7)}{12} = \frac{19 - 7}{12} = \frac{12}{12} = 1$ 

orders@surabooks.com



But consider the two rational number  $\frac{5}{2}$  and 0.

$$\frac{5}{2} \div 0 = \frac{5}{2 \times 0} = \frac{5}{0}$$

Here denominator = 0 and it is not a rational number.

: Closure property is not true for division of rational numbers.

orders@surabooks.com

Unit - 1 - Number

|                |                                            | Fill in the blan                                                 | ks in the table given l              | oelow of propertie      | s of Integers.              |                                                    |
|----------------|--------------------------------------------|------------------------------------------------------------------|--------------------------------------|-------------------------|-----------------------------|----------------------------------------------------|
| Operations     |                                            | (If a, b, c                                                      | are integers, then -a                | t, -b, -c are also in   | itegers)                    |                                                    |
| 4              | Closure                                    | Commutative                                                      | Associative                          | Identity                | Inverse                     | Distributive                                       |
|                | $a+b$ is in $\mathbb{Z}$                   | a + b = b + a                                                    | (a+b)+c                              | a + 0                   | (v-)+v                      | $a \times (b + c)$                                 |
|                |                                            |                                                                  | =a+(b+c)                             | = 0 + a = a             | = (-a) + a = 0              | $= (a \times b) + (a \times c)$                    |
| • • • •        | E.g.                                       | E.g.                                                             | E.g.                                 | E.g.                    | E.g.                        | E.g.                                               |
| Addition       | 5+(-3)=2                                   | 5 + (-3) = (-3) + 5                                              | (2+3)+(-4)=1                         | (-4) + 0                | 5 + (-5)                    | $2 \times [3 + (-5)] = -4$                         |
|                | $\Rightarrow 2$ is in $\mathbb{Z}$         | $\Rightarrow 2 = 2$                                              | 2 + [3 + (-4)] = 1                   | = 0 + (-4) = -4         | =(-5)+5=0                   | $(2 \times 3) + [2 \times (-5)]$                   |
|                |                                            |                                                                  |                                      |                         |                             | =-4                                                |
|                | ab is in $\mathbb{Z}$                      | $a \times b = b \times a$                                        | $(a \times b) \times c$              | a ×1                    |                             |                                                    |
|                |                                            |                                                                  | $=a \times (b \times c)$             | $= 1 \times a = a$      |                             |                                                    |
| Multiplication | $E.g. 2 \times 3 = 6$                      | $\text{E.g.} \underbrace{2 \times 3 = 3}_{\text{B.g.}} \times 2$ | E.g.                                 | E.g. $1 \times 7 = 7$   | Does not exist              | Not Applicable                                     |
|                | $\Rightarrow$ 6 is in $\mathbb{Z}$         | $\Rightarrow 6 = 6$                                              | $(2 \times 3) \times (-6) = -36$     |                         |                             |                                                    |
|                |                                            |                                                                  | $2 \times [3 \times (-6)] = -36$     |                         |                             |                                                    |
|                | $a - b$ is in $\mathbb{Z}$                 | Fails                                                            | Fails                                | Fails                   | Fails $a - (-a)$            | $a \times (b - c)$                                 |
|                |                                            | $a - b \neq b - a$                                               | (a-b)-c<br>$\neq a-(b-a)$            | $a - 0 \neq 0 - a$      | $\neq (-a) - a$             | $= (a \times b) - (a \times c)$                    |
| Subtraction    | E.g.                                       | E.g.                                                             | E.g.                                 | E.g.                    | E.g.                        | $E.g. 7 \times (5-2)$                              |
|                | 7 - 2 = 5                                  | $7 - 2 \neq 2 - 7$                                               | $(7-2)-5 \neq 7-(2-5)$               | 5 - 0 = 0 - 5<br>5 = -5 | 2 - (-2) = 4                | $= (7 \times 5) - (7 \times 5)$<br>7 × 3 = 35 - 14 |
|                |                                            | ç — ≠ ç                                                          | $5 - 5 \neq 7 - (-3)$<br>$0 \neq 10$ | 5≠-5                    | $(-2) - 2 = -4$ $4 \neq -4$ | 21 = 21                                            |
|                | Fails<br>$a \div b$ is not in $\mathbb{Z}$ |                                                                  |                                      | •                       | C                           |                                                    |
| Division       | E.g. $3 \div 5 = \frac{3}{r}$ does         | Fails                                                            | Fails                                | Fails                   | Fails                       | Not applicable                                     |
|                | not belong to $\mathbb{Z}$                 |                                                                  |                                      |                         |                             |                                                    |

🖞 Sura's 🛶 8th Std - Mathematics

This is Only for Sample For Full Book Order Online or Available at All Leading Bookstores

🖑 Sura's 🛶 8th Std - Mathematics

Unit - 1 - Numbers M TRY THESE Page No. 22 (i) Is  $\frac{3}{5} - \frac{7}{8} = \frac{7}{8} - \frac{3}{5}$ ? LHS =  $\frac{3}{5} \div \frac{7}{8} = \frac{(3 \times 8) - (7 \times 5)}{40} = \frac{24 - 35}{40} = \frac{-11}{40}$ Sol. RHS =  $\frac{7}{8} - \frac{3}{5} = \frac{(7 \times 5) - (3 \times 8)}{40} = \frac{35 - 24}{40} = \frac{11}{40}$ LHS  $\neq$  RF  $\frac{3}{5} \div \frac{7}{8} \neq \frac{7}{8} - \frac{3}{5}$ : Subtraction of rational numbers is not commutative. (ii) Is  $\frac{3}{5} \div \frac{7}{8} = \frac{7}{8} \div \frac{5}{3}$ ? So, what do you conclude? LHS =  $\frac{3}{5} \div \frac{7}{8} = \frac{3}{5} \times \frac{8}{7} = \frac{24}{35}$ Sol. RHS =  $\frac{7}{8} \div \frac{5}{3} = \frac{7}{8} \times \frac{3}{5} = \frac{21}{40}$  $\therefore$  LHS  $\neq$  RHS  $\therefore \frac{3}{5} \div \frac{7}{6} \neq \frac{7}{8} \div \frac{5}{3}$ *.*.. Commutative property not hold good for division of rational numbers. Check whether associative property holds for subtraction and division. **Sol.** Consider the rational numbers  $\frac{2}{3}, \frac{1}{2}$  and  $\frac{3}{4}$ To verify  $\left(\frac{2}{3} - \frac{1}{2}\right) - \frac{3}{4} = \frac{2}{3} - \left(\frac{1}{2} - \frac{3}{4}\right)$ LHS =  $\left(\frac{2}{3} - \frac{1}{2}\right) - \frac{3}{4} = \left(\frac{(2 \times 2) - (1 \times 3)}{6}\right) - \frac{3}{4}$  $=\left(\frac{4-3}{6}\right)-\frac{3}{4}=\frac{1}{6}-\frac{3}{4}=\frac{(1\times 2)-(3\times 3)}{12}=\frac{2-9}{12}=\frac{-7}{12}$ RHS =  $\frac{2}{3} - \left(\frac{1}{2} - \frac{3}{4}\right) = \frac{2}{3} - \left(\frac{2-3}{4}\right) = \left(\frac{2}{3} - \left(\frac{-1}{4}\right)\right)$  $= \frac{2}{3} + \frac{1}{4} = \frac{(2 \times 4) + (1 \times 3)}{12} = \frac{8 + 3}{12} = \frac{11}{12}$ LHS  $\neq$  R  $\therefore \left(\frac{2}{2} - \frac{1}{2}\right) - \frac{3}{4} \neq \frac{2}{2} - \left(\frac{1}{2} - \frac{3}{4}\right)$ : Associative property not holds for subtraction of rational numbers

Also to verify 
$$\left(\frac{2}{3} \div \frac{1}{2}\right) \div \frac{3}{4} = \frac{2}{3} \div \left(\frac{1}{2} \div \frac{3}{4}\right)$$

orders@surabooks.com

22

🖞 Sura's 🛶 8th Std - Mathematics

LHS = 
$$\left(\frac{2}{3} \div \frac{1}{2}\right) \div \frac{3}{4} = \left(\frac{2}{3} \times \frac{2}{1}\right) \div \frac{3}{4}$$
  
=  $\frac{4}{3} \div \frac{3}{4} = \frac{4}{3} \times \frac{4}{3} = \frac{16}{9}$   
RHS =  $\frac{2}{3} \div \left(\frac{1}{2} \div \frac{3}{4}\right) = \frac{2}{3} \div \left(\frac{1}{2} \times \frac{4}{3}\right) = \frac{2}{3} \div \left(\frac{2}{3}\right)$   
=  $\frac{2}{3} \times \frac{3}{2} = 1$   
LHS  $\neq$  RHS  
 $\left(\frac{2}{3} \div \frac{1}{2}\right) \div \frac{3}{4} \neq \frac{2}{3} \div \left(\frac{1}{2} \div \frac{3}{4}\right)$ 

i.e.

: Associative property does not hold for division of rational numbers.



1. Verify the closure property for addition and multiplication for the rational numbers  $\frac{-5}{7}$  and  $\frac{8}{9}$ .

*Sol.* Closure property for addition.

Let 
$$a = \frac{-5}{7}$$
 and  $b = \frac{8}{9}$  be the given rational numbers.  
 $a + b = \frac{-5}{7} + \frac{8}{9}$   
 $= \frac{(-5 \times 9) + (8 \times 7)}{7 \times 9}$   
 $= \frac{-45 + 56}{63} = \frac{11}{63}$  is in Q  
i.e  $a + b = \frac{-5}{7} + \frac{8}{9} = \frac{11}{63}$  is in Q.

Closure property is true for addition of rational numbers. Closure property for multiplication

Let

$$a = \frac{7}{7}$$
 and  $b = \frac{9}{9}$   
 $a \times b = \frac{-5}{7} \times \frac{8}{9} = \frac{-40}{63}$  is in Q.

8

-5

: Closure property is true for multiplication of rational numbers.

🕼 Sura's 🛶 8th Std - Mathematics

Unit - 1 - Numbers

2. Verify the commutative property for addition and multiplication for the rational numbers  $\frac{-10}{11}$  and  $\frac{-8}{33}$ . Sol. Let  $a = \frac{-10}{11}$  and  $b = \frac{-8}{33}$  be the given rational numbers. Now  $a + b = \frac{-10}{11} + \left(\frac{-8}{33}\right) = \frac{(-10 \times 3) + (-8 \times 1)}{33} = \frac{-30 + (-8)}{33}$  $a + b = \frac{-38}{33}$  .....(1)

From (1) and (2)

a + b = b + a and hence addition is commutative for rational numbers.

Further 
$$a \times b = \frac{-10}{11} \times \left(\frac{-8}{33}\right) = \frac{80}{363}$$
  
 $a \times b = \frac{80}{363}$  .....(3)  
 $b \times a = \frac{-8}{33} \times \left(\frac{-10}{11}\right) = \frac{80}{363}$  .....(4)  
 $a \times b = b \times a$ 

From (3) and (4)  $a \times b = b \times a$ 

Hence multiplication is commutative for rational numbers.

# 3. Verify the associative property for addition and multiplication for the rational numbers $\frac{-7}{9}, \frac{5}{6}$ and $\frac{-4}{3}$ .

Sol.

24

Let  $a = \frac{-7}{9}, b = \frac{5}{6}, c = \frac{-4}{3}$  be the given rational numbers.  $(a+b)+c = \left(\frac{-7}{9}+\frac{5}{6}\right)+\left(\frac{-4}{3}\right)=\left(\frac{-7\times2+5\times3}{18}\right)+\left(\frac{-4}{3}\right)$   $= \left(\frac{-14+15}{18}\right)+\left(\frac{-4}{3}\right)=\frac{1}{18}+\left(\frac{-4}{3}\right)$   $= \frac{1+(-4)\times6}{18}=\frac{1+(-24)}{18}=\frac{-23}{18}$ ...(1)  $a+(b+c) = -\frac{7}{9}+\left(\frac{5}{6}+\frac{(-4)}{3}\right)=\frac{-7}{9}+\left(\frac{5+(-4)2}{6}\right)$ 

$$= \frac{-7}{9} + \left(\frac{5+(-8)}{6}\right) = -\frac{7}{9} + \left(\frac{-3}{6}\right) = -\frac{7}{9} + \left(\frac{-1}{2}\right)$$
$$= \frac{-7 \times 2 + (-1) \times 9}{18} = \frac{-14 + (-9)}{18} = \frac{-23}{18} \qquad \dots (2)$$

Ph: 9600175757 / 8124201000

orders@surabooks.com

🖞 Sura's 👞 8th Std - Mathematics

From (1) and (2), (a+b)+c = a+(b+c) is true for rational numbers.

Now

$$(a \times b) \times c = \left(\frac{-7}{9} \times \frac{5}{6}\right) \times \left(\frac{-4}{3}\right) = \left(\frac{-7 \times 5}{9 \times 6}\right) \times \left(\frac{-4}{3}\right)$$
$$= \frac{-35}{54} \times \frac{-4}{3} = \frac{-35 \times (-4)}{54 \times 3} = \frac{70}{81} \qquad \dots (1)$$
$$a \times (b \times c) = \frac{-7}{9} \times \left(\frac{5}{\frac{6}{9}} \times \frac{-4}{3}\right) = \frac{-7}{9} \times \frac{5 \times (-2)}{3 \times 3}$$
$$= \frac{-7}{9} \times \frac{(-10)}{9} = \frac{70}{81} \qquad \dots (2)$$

From (1) and (2)  $(a \times b) \times c = a \times (b \times c)$  is true for addition and multiplication for the rational numbers.

Thus associative property.

 $(a \times$ 

4. Verify the distributive property  $a \times (b + c) = (a \times b) + (a + c)$  for the rational numbers  $a = \frac{-1}{2}$ ,  $b = \frac{2}{3}$  and  $c = \frac{-5}{6}$ .

**Sol.** Given the rational number  $a = \frac{-1}{2}$ ;  $b = \frac{2}{3}$  and  $c = \frac{-5}{6}$ 

$$(2 \ 3) \ (2 \ 6))$$

$$= \frac{-2}{6} + \frac{5}{12} = \frac{(-2 \times 2) + 5 \times 1}{12} = \frac{-4 + 5}{12}$$

$$(a \times b) + (a \times c) = \frac{1}{12} \qquad \dots (2)$$

From (1) and (2) we have  $a \times (b + c) = (a \times b) + (a \times c)$  is true. Hence multiplication is distributive over addition for rational numbers.

Verify the identity property for addition and multiplication for the rational numbers  $\frac{15}{19}$  and  $\frac{-18}{25}$ .

Sol.

$$\frac{15}{19} + 0 = \frac{15}{19} + \frac{0}{19} = \frac{15+0}{19} = \frac{15}{19}$$
$$\frac{-18}{25} + 0 = \frac{-18}{25} + \frac{0}{25} = \frac{-18+0}{25} = \frac{-18}{25}$$

Identify property for addition verified.

🖤 Sura's 🛶 8th Std - Mathematics

$$\frac{15}{19} \times 1 = \frac{15 \times 1}{19} = \frac{15}{19}$$
$$\frac{-18}{25} \times 1 = \frac{-18 \times 1}{25} = \frac{-18}{25}$$

Identify property for multiplication verified.

Verify the additive and multiplicative inverse property for the rational numbers  $\frac{-7}{17}$  and  $\frac{17}{27}$ .

**Unit - 1 - Numbers** 

$$\frac{-7}{17} + \frac{7}{17} = \frac{-7+7}{17} = \frac{0}{17} = 0$$
$$\frac{17}{27} + \left(-\frac{17}{27}\right) = \frac{17+(-17)}{27} = \frac{0}{27} = 0$$

Additive inverse for rational numbers verified.

$$\frac{-7}{17} \times \frac{17}{-7} = \frac{\cancel{11} \times \cancel{11}}{\cancel{11} \times \cancel{11}} = 1$$
$$\frac{17}{27} \times \frac{27}{17} = \frac{\cancel{11} \times \cancel{21}}{\cancel{11} \times \cancel{11}} = 1$$

Multiplicative inverse for rational numbers verified.

## **OBJECTIVE TYPE QUESTIONS**

7. Closure property is not true for division of rational numbers because of the number (D)  $\frac{1}{2}$  [Ans: (C) 0] (B) −1 (C) 0 (A)  $\frac{1}{2} - \left(\frac{3}{4} - \frac{5}{6}\right) \neq \left(\frac{1}{2} - \frac{3}{4}\right) - \frac{5}{6}$  illustrates that subtraction does not satisfy the \_\_\_\_\_ property for rational numbers. (A) commutative (B) closure (C) distributive (D) associative [Ans: (D) associative] 9. Which of the following illustrates the inverse property for addition? (A)  $\frac{1}{8} - \frac{1}{8} = 0$  (B)  $\frac{1}{8} + \frac{1}{8} = \frac{1}{4}$  (C)  $\frac{1}{8} + 0 = \frac{1}{8}$  (D)  $\frac{1}{8} - 0 = \frac{1}{8}$ [Ans: (A)  $\frac{1}{2} - \frac{1}{2} = 0$ ] 10.  $\frac{3}{4} \times \left(\frac{1}{2} - \frac{1}{4}\right) = \frac{3}{4} \times \frac{1}{2} - \frac{3}{4} \times \frac{1}{4}$  illustrates that multiplication is distributive over. (A) addition (B) subtraction (C) multiplication (D) division [Ans: (B) subtraction] THINK Page No. 25 Observe that,  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} = \frac{2}{3}; \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} = \frac{3}{4}; \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} = \frac{4}{5}$  Use your 1. reasoning skills, to find the sum of the first 7 numbers in the pattern given above. **Sol.**  $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \frac{1}{5.6} + \frac{1}{6.7} + \frac{1}{7.8} = \frac{7}{8}$ 26 orders@surabooks.com Ph: 9600175757 / 8124201000

🗘 Sura's 🛶 8th Std - Mathematics

| 🕜 Think | Page No. 2 |
|---------|------------|
|---------|------------|

- **1.** Is the square of a prime number, prime?
- **Sol.** No, the square of a prime number 'P' has at least 3 divisors 1, P and P<sup>2</sup>. But a prime number is a number which has only two divisors, 1 and the number itself. So square of a prime number is not prime.
- 2. Will the sum of two perfect squares always be a perfect square? What about their difference and their product?
- **Sol.** The sum of two perfect squares, need not be always a perfect square. Also the difference of two perfect squares need not be always a perfect square. Bu the product of two perfect square is a perfect square.

## W TRY THESE

- **1.** Which among 256, 576, 960, 1025, 4096 are perfect square numbers? (Hint: Try to extend the table of squares already seen).
- Sol.

$$256 = 16^{2}$$

$$576 = 24^{2}$$

$$4096 = 64^{2}$$

: 256, 576 and 4096 are perfect squares

- 2. One can judge just by look, that each of the following numbers (82, 113, 1972, 2057, 8888, 24353) is not a perfect square. Explain why?
- Sol. Because the unit digit of a perfect square will be 0, 1, 4, 5, 6, 9. But the given numbers have unit digits 2, 3, 7, 8. So they are not perfect squares.

## THINK

**1.** Consider the claim: "Between the squares of the consecutive numbers n and (n+1), there are 2n non-square numbers". Can it be true? How many non-square numbers are there between 2500 and 2601? Verify the claim.

Sol. If  $n = 50 \Rightarrow n^2 = 50^2 = 2500$   $n + 1 = 51 \Rightarrow (n + 1)^2 = 51^2 = 2601$ Non-square numbers of 2500 and 2601 =  $100 = 2 \times 50 = 2n$ So it is true that between the classes of successive numbers n, n + 1, there are non-square numbers of 2n. Page No. 30

# 1. In this case, if we want to find the smallest factor with which we can multiply or divide 108 to get a square number, what should we do?

Sol.

 $108 = 2 \times 2 \times 3 \times 3 = 2^2 \times 3^2 \times 3$ 

If we multiply the factors by 2, then we get

 $2^2 \times 3^2 \times 3 \times 3 \Rightarrow 2^2 \times 3^2 \times 3^2 = (2 \times 3 \times 3)^2$ 

Which is perfect square.

- : Again if we divide by 3 then we get  $2^2 \times 3^2 \Rightarrow (2 \times 3)^2$ , a perfect square.
- : We have to multiply or divide 108 by 3 to get a perfect square.

27

Page No. 26

Page No. 27



X

>84

 $\downarrow$ 

4 6 4

Ph: 9600175757 / 8124201000

**>**20

 $\mathbf{1}$ 

🖞 Sura's 🛶 8th Std - Mathematics

THINK

| Try to fill i     | n the blanks using                          | $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$                    |                   |                              |                                           |
|-------------------|---------------------------------------------|-----------------------------------------------------------|-------------------|------------------------------|-------------------------------------------|
| $\sqrt{36} = 6$   | $\sqrt{9} \times \sqrt{4} = 3 \times 2 = 6$ | $\operatorname{Is}\sqrt{36} = \sqrt{9} \times \sqrt{4} ?$ | $\sqrt{81} = 9$   | $\sqrt{9} \times \sqrt{9}$   | Is $\sqrt{81} = \sqrt{9} \times \sqrt{9}$ |
|                   |                                             |                                                           |                   | $=3 \times 3 = 9$            |                                           |
| $\sqrt{144} = 12$ | $\sqrt{9} \times \sqrt{16}$                 | Is                                                        | $\sqrt{144} = 12$ | $\sqrt{36} \times \sqrt{4}$  | Is $\sqrt{144}$                           |
|                   | $=3 \times 4 = 12$                          | $\sqrt{144} = \sqrt{9} \times \sqrt{16}?$                 |                   | $=6 \times 2 = 12$           | $=\sqrt{36}\times\sqrt{4}$ ?              |
| $\sqrt{100} = 10$ | $\sqrt{25} \times \sqrt{4}$                 | Is $\sqrt{100}$                                           | √1225             | $\sqrt{25} \times \sqrt{49}$ | Is $\sqrt{1225}$                          |
|                   | $=5 \times 2 = 10$                          | $=\sqrt{25}\times\sqrt{4}$ ?                              | = 35              | $=5 \times 7 = 35$           | $=\sqrt{25}\times\sqrt{49}?$              |

## **TRY THESE**

Page No. 34

Page No. 33

Using this method, find the square root of the numbers 1.2321 and 11.9025.

Sol. (i) 
$$\sqrt{1.2321} = \sqrt{\frac{12321}{10000}} = \frac{111}{100} = 1.11$$
  
(ii)  $\sqrt{11.9025} = \frac{\sqrt{119025}}{\sqrt{10000}} = \frac{345}{100} = 3.45$ 

#### M TRY THESE

Page No. 34

Write the numbers in ascending order (1) 4,  $\sqrt{14}$ , 5 (2) 7,  $\sqrt{65}$ , 8

- 4.  $\sqrt{14}$ . 5 **Sol.** (i) Squaring all the numbers we get  $4^2$ ,  $(\sqrt{14})^2$ ,  $5^2 \Rightarrow 16$ , 14, 25 : Ascending order : 14, 16, 25 Ascending order :  $\sqrt{14}$ , 4, 5
  - 7,  $\sqrt{65}$ , 8 (ii) Squaring 7,  $\sqrt{65}$  and 8 we get 7<sup>2</sup>,  $(\sqrt{65})^2$ , 8<sup>2</sup>  $\Rightarrow$  49, 65, 64 Ascending order : 49, 64, 65 Ascending order : 7, 8,  $\sqrt{65}$



#### 1. Fill in the blanks:

| (i)<br>(ii)                                  | The ones digit in the square of 77 is<br>The number of non-square numbers between $24^2$ and $25^2$ is                                                                                                                                                                                       | [Ans: 9]<br>[Ans: 48]                                                    |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| (iii)<br>(iv)                                | The number of perfect square numbers between 300 and 500 is                                                                                                                                                                                                                                  | [Ans: 5]<br>ts. [Ans: 3]                                                 |
| (v)                                          | The value of $\sqrt{180}$ lies between integers and                                                                                                                                                                                                                                          | <b>Ans:</b> 13, 14]                                                      |
| Say 1<br>(i)<br>(ii)<br>(iii)<br>(iv)<br>(v) | <b>True or False:</b><br>When a square number ends in 6, its square root will have 6 in the unit's place.<br>A square number will not have odd number of zeros at the end.<br>The number of zeros in the square of 91000 is 9.<br>The square of 75 is 4925.<br>The square root of 225 is 15. | [Ans: True]<br>[Ans: True]<br>[Ans: False]<br>[Ans: False<br>[Ans: True] |
|                                              |                                                                                                                                                                                                                                                                                              | 20                                                                       |

#### orders@surabooks.com

|          |      | ,             |                                      | Sura's 👞 8th Std - Mathematic                             | s a la companya de la |
|----------|------|---------------|--------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| D        | 3    | Find          | the square of                        | the following numbers                                     |                                                                                                                 |
| 1901     | 5.   | (i) 1         | 7                                    | (ii) 203                                                  | (iii) 1098                                                                                                      |
| Nur      | Sol. | (i)           | $\frac{17 \times 17}{119}$           | (ii) $203 \times 203$                                     | (iii) $1098 \times 1098$<br>8784                                                                                |
| <u>.</u> |      |               | 17                                   | 000                                                       | 9882                                                                                                            |
| <u>.</u> |      |               | 289                                  | 406                                                       | 10980                                                                                                           |
| ini      |      |               |                                      | 41209                                                     | 1205604                                                                                                         |
|          | 4.   | Exar<br>(i) 7 | nine if each of<br>25 (ii) 190 (iii) | the following is a perfect square:<br>841 (iv) 1089       |                                                                                                                 |
|          | Sal  | (i) //        | 725                                  |                                                           | 5 725                                                                                                           |
|          | 501. | (1)           | 125                                  | $725 = 5 \times 5 \times 29 = 5^2 \times 29$              | 5 145                                                                                                           |
|          |      | Here          | the second prin                      | me factor 29 does not have a pair.                        | $\frac{3}{20}$ 20                                                                                               |
|          |      | Henc          | ce 725 is not a p                    | berfect square number.                                    |                                                                                                                 |
|          |      | (ii)          | 190                                  |                                                           |                                                                                                                 |
|          |      |               |                                      | $190 = 2 \times 5 \times 19$                              | 2 190                                                                                                           |
|          |      | Here          | the factors 2, 5                     | and 9 does not have pairs.                                | 5 95                                                                                                            |
|          |      | Henc          | e 190 is not a p<br>841              | perfect square number.                                    | 19                                                                                                              |
|          |      | (111)         | 041                                  | $841 = 29 \times 29$                                      |                                                                                                                 |
|          |      |               | Hence 841 is                         | a perfect square                                          | 3 1089                                                                                                          |
|          |      | (vi)          | 1089                                 | a perioet square                                          | 3 363                                                                                                           |
|          |      | (1)           | 1007                                 | $1089 = 3 \times 3 \times 11 \times 11$                   | 7 121                                                                                                           |
|          |      |               |                                      | $1089 = 3^2 \times 11^2$                                  |                                                                                                                 |
|          |      |               |                                      | $\sqrt{1089} = 3 \times 11 = 33$                          |                                                                                                                 |
|          |      |               | Hence 1089 is                        | s a perfect square                                        |                                                                                                                 |
|          | 5.   | Find          | the square ro                        | ot by prime factorisation method.                         | 2 144                                                                                                           |
|          |      | (i) 14        | 44 (ii) 256 (iii)                    | 784 (iv) 1156 (v) 4761 (vi) 9025                          | $\frac{2}{2}$ 72                                                                                                |
|          | Sol. | (i)           | 144                                  |                                                           | $\frac{2}{2}$ 36                                                                                                |
|          |      |               | $144 = 2 \times 2 \times$            | $2 \times 2 \times 3 \times 3$                            | 2 18                                                                                                            |
|          |      |               | $\sqrt{144} = 2 \times 2$            | $2 \times 3 = 12$                                         | 3 9                                                                                                             |
|          |      |               |                                      |                                                           | 3                                                                                                               |
|          |      | (ii)          | 256                                  |                                                           | 2 256                                                                                                           |
|          |      |               | $256 = 2 \times 2 \times$            | $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$ | 2 200                                                                                                           |
|          |      |               | $\sqrt{256} = 2 \sqrt{256}$          | $2 \times 2 \times 2 = 16$                                | $\frac{2}{264}$                                                                                                 |
|          |      |               | $\sqrt{250} = 2 \times 10^{-1}$      | $2 \wedge 2 \wedge 2 = 10$                                | $\frac{204}{232}$                                                                                               |
|          |      |               |                                      |                                                           | $\frac{2}{2}$ 32                                                                                                |
|          |      |               |                                      |                                                           | $\angle 10$                                                                                                     |

om Ph: 9600175757 / 8124201000

2

#### 30

orders@surabooks.com

🖞 Sura's 👞 8th Std - Mathematics

|      | (iii)             | 784          |                                                                       |                                                              |                            |              |                    |                |
|------|-------------------|--------------|-----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|--------------|--------------------|----------------|
|      |                   | 784 =        | $= 2 \times 2 \times 2 \times 2 \times 7 >$                           | < 7                                                          |                            |              | 2                  | 78/            |
|      |                   | $\sqrt{784}$ | $\bar{\mathfrak{l}} = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ | $7 \times 7 = 28$                                            |                            |              | $\frac{2}{2}$      | 392            |
|      |                   |              |                                                                       |                                                              |                            |              | $\frac{-2}{2}$     | 190            |
|      |                   |              |                                                                       |                                                              |                            |              | 2                  | 98             |
|      |                   |              |                                                                       |                                                              |                            |              | 7                  | 49             |
|      | (iv)              | 1156         |                                                                       |                                                              |                            |              |                    | 7              |
|      |                   |              | 1156                                                                  | $= 2 \times 2 \times 17$                                     | $7 \times 17$              |              |                    |                |
|      |                   |              | 1156                                                                  | $= 2^2 \times 17^2$                                          |                            |              | $\frac{2}{2}$      |                |
|      |                   |              | 1156                                                                  | $= (2 \times 17)^2$                                          |                            |              | $\frac{2}{17}$     | 25             |
|      |                   |              | · \ <u>1156</u>                                                       | $-\sqrt{(2 \times 17)^2}$                                    | $\frac{1}{2}$ - 2 × 17 - 3 | 34           | $\frac{17}{17}$    | 20             |
|      |                   |              |                                                                       | $= \sqrt{(2/(17))}$                                          | -2~17-5                    | ,4           |                    |                |
|      | $\langle \rangle$ | 47(1         | ∴ √1150                                                               | = 34                                                         |                            |              | /                  |                |
|      | (v)               | 4/61         | 1761                                                                  | $= 3 \times 3 \times 23$                                     | 1 × 23                     |              | 2                  | 170            |
|      |                   |              | 4761                                                                  | $= 3^{2} \times 3^{2} \times 23^{2}$ $= 3^{2} \times 23^{2}$ | 0 ~ 23                     |              | $\frac{3}{3}$      | 159            |
|      |                   |              | 4761                                                                  | $= (3 \times 23)^2$                                          |                            |              | $\frac{3}{23}$     | 52             |
|      |                   |              | $\sqrt{4761}$                                                         | $= \sqrt{(3 \times 23)^2}$                                   | 2                          |              | 23                 |                |
|      |                   |              | $\sqrt{4761}$                                                         | = 3 × 23                                                     |                            |              |                    | Ť              |
|      |                   |              | √4761                                                                 | = 69                                                         |                            | I            |                    |                |
|      | (vi)              | 0025         |                                                                       |                                                              |                            |              | $\frac{5}{5}$      | 902            |
|      | (VI)              | 9023         | 9025                                                                  | $= 5 \times 5 \times 19$                                     | ) × 19                     |              | $\frac{3}{10}$     | 180            |
|      |                   |              | 9025                                                                  | $= 5^2 \times 19^2$                                          |                            |              | 19                 | 30             |
|      |                   |              | 9025                                                                  | $= (5 \times 19)^2$                                          | _                          |              |                    | <u> </u>       |
|      |                   |              | $\sqrt{925}$                                                          | $= \sqrt{(5 \times 19)^2}$                                   | $^{2} = 5 \times 19 = 9$   | 15           |                    |                |
| 6.   | Find              | the sq       | uare root by long                                                     | division metho                                               | d.                         |              |                    |                |
|      | (i) 17            | 64 (ii       | i) 6889 (iii) 11025                                                   | (iv) 17956 (v                                                | v) <b>418609</b>           |              |                    |                |
| Sol. | (i)               | 1764         |                                                                       | (ii) 6889                                                    | (                          | (iii) 1102   | .5                 |                |
|      |                   |              | 4 2                                                                   |                                                              |                            |              | 1                  | 0 5            |
|      |                   | 4            | $17 \overline{64}$                                                    | 8                                                            | 3                          | 1            | 1                  | 10 23          |
|      |                   | 82           | 1 64                                                                  | 8 68                                                         | 89                         | 20           |                    | <b>▼</b><br>10 |
|      |                   | _            | 1 64                                                                  | 163 4                                                        | 89                         |              |                    | 0              |
|      |                   |              | 0                                                                     | 4                                                            | 89                         | 205          |                    | 10 25          |
|      |                   |              |                                                                       |                                                              | 0                          |              |                    | 10 23          |
|      |                   |              |                                                                       |                                                              |                            |              | I                  | 0              |
|      |                   | $\sqrt{176}$ | $\overline{4} = 42$                                                   | $\sqrt{6889}$                                                | $\bar{P} = 83$             | $\sqrt{110}$ | $\overline{)25} =$ | 105            |

| 2 | 784 |
|---|-----|
| 2 | 392 |
| 2 | 196 |
| 2 | 98  |
| 7 | 49  |
|   | 7   |
|   |     |

| 2  | 1156 |
|----|------|
| 2  | 578  |
| 17 | 289  |
| 17 | 17   |
|    | 1    |

| 3  | 4761 |
|----|------|
| 3  | 1587 |
| 23 | 529  |
| 23 | 23   |
|    | 1    |

| 5  | 9025 |
|----|------|
| 5  | 1805 |
| 19 | 361  |
| 19 | 19   |
|    | 1    |

10 25

0 10 25

 $10\ 25$ 0

orders@surabooks.com