

Mathematics

8in Standard

Based on the New Syllabus and Updated New Textbook

Salient Features:
\longrightarrow Prepared as per the updated New Textbook.

- Exhaustive Additional Questions \& Answers in all chapters.
- Unit Test Question paper for each unit, with answer key.
\longrightarrow Government Model Question Paper 2019-20.

SURA PUBLICATIONS

Chennai

2021－ 22 Edition
© Reserved with Publishers
ISBN ：978－93－5330－310－5
Code No．：FY－8－M

Author：

S．Niranjan，B．Tech．，PGDM（IIM）
Chennai
Published by ：
Mr．Subash Raj，B．E．，M．s．

Head Office：

1620，‘J’ Block，16th Main Road，
Anna Nagar，Chennai－ 600040.
Phones：044－4862 9977，044－486 27755
Mob： 8124201000 ／ 9840926027
e－mail ：orders＠surabooks．com
website ：www．surabooks．com

Our Guides for Std．IX

TERMWISE GUIDES（for each Term）
A Sura＇s Tamil Guide
人 Sura＇s English Guide
人 Sura＇s Maths Guide（EM \＆TM）
＾Sura＇s Science Guide（EM \＆TM）
＾Sura＇s Social Science Guide（EM \＆TM）
－Sura＇s 5－in－1
with all 5 subjects in one guide（EM \＆TM）

FULL YEAR GUIDES for 3 Terms together
A Sura＇s Tamil Guide
人 Sura＇s English Guide
人 Sura＇s Maths Guide（EM \＆TM）
＾Sura＇s Science Guide（EM \＆TM）
＾Sura＇s Social Science Guide（EM \＆TM）
人 Sura＇s Map Workbook（EM \＆TM）

NOTE FROM PUBLISHER

It gives me great pride and pleasure in bringing to you Sura's Mathematics Guide for Full Year for $\boldsymbol{8}^{\text {th }}$ Standard. It is prepared as per the New Syllabus and New Textbook for the year 2021-22.

This guide encompasses all the requirements of the students to comprehend the text and the evaluation of the textbook.

- Additional questions have been provided exhaustively for clear understanding of the units under study.
- Chapter-wise Unit Test are given.

In order to learn effectively, I advise students to learn the subject section-wise and practice the exercises given. It will be a teaching companion to teachers and a learning companion to students. Though these salient features are available in this Guide, I cannot negate the indispensable role of the teachers in assisting the student to understand the subject thoroughly.

I sincerely believe this guide satisfies the needs of the students and bolsters the teaching methodologies of the teachers.

I pray the almighty to bless the students for consummate success in their examinations.

TO ORDER WITH US

SCHOOLS and TEACHERS:

We are grateful for your support and patronage to 'SURA PUBLICATIONS' Kindly prepare your order in your School letterhead and send it to us.
For Orders contact: 8124201000 / 8124301000

DIRECT DEPOSIT

A/c Name	$:$ Sura Publications
Our A/c No.	$: 36550290536$
Bank Name	$:$ STATE BANK OF INDIA
Bank Branch	$:$ PADI
IFSC	$:$ SBIN0005083

A/c Name	$:$ Sura Publications	
Our A/c No.	$:$	$\mathbf{2 1 0 0 0 2 1 0 0 0 1 2 4 0}$
Bank Name	$:$	UCO BANK
Bank Branch	$:$ Anna Nagar West	
IFSC	:	UCBA0002100

A/c Name	Sura Publications	A/c Name	Sura Publications
Our A/c No.	: 6502699356	Our A/c No.	1154135000017684
Bank Name	: INDIAN BANK	Bank Name	KVB BANK
Bank Branch	: ASIAD COLONY	Bank Branch	Anna Nagar
IFSC	: IDIB000A098	IFSC	KVBL0001154

After Deposit, please send challan and order to our address.
email : orders@surabooks.com / Whatsapp : 8124201000.

DEMAND DRAFT / CHEQUE

Please send Demand Draft / cheque in favour of 'SURA PUBLICATIONS' payable at Chennai.

The Demand Draft / cheque should be sent with your order in School letterhead.

STUDENTS :

Order via Money Order (M/O) to

CONTENTS

1. Numbers 1-62
2. Measurements 63-94
3. Algebra 95-174
4. Life Mathematics 175-222
5. Geometry 223-266
6. Statistics 267-288
7. Information Processing. 289-322
Govt. Model Question Paper - 2019-2020 323-330

For More Information - Contact		
Doubts in Our Guides	$:$	
For Order	enquiry@surabooks.com	
Contact	orders@surabooks.com	
Whatsapp	$8056294222 / 8056215222$	
Online Site	$: 8124201000 / 9840926027$	
For Free Study Materials Visit http://tnkalvi.in		

NUMBERS

POINTS TO REMEMBER

A number that can be expressed in the form $\frac{a}{b}$ where a and b are integers and $\mathrm{b} \neq 0$ is
called a rational number.
$\square \quad$ All natural numbers, whole numbers, integers and fractions are rational numbers.
\square Every rational number can be represented on a number line.
$\square \quad 0$ is neither a positive nor a negative rational number.
$\square \quad$ A rational number $\frac{a}{b}$ is said to be in the standard form if its denominator b is a positive integer and HCF $(a, b)=1$
$\square \quad$ There are unlimited numbers of rational numbers between two rational numbers.
\square Subtracting two rational numbers is the same as adding the additive inverse of the second number to the first rational number.
\square Multiplying two rational numbers is the same as multiplying their numerators and denominators separately and then writing the product in the standard form.
\square Dividing a rational number by another rational number is the same as multiplying the first rational number by the reciprocal of the second rational number.
$\square \quad$ The following table is about the properties of rational numbers (\mathbb{Q}).

\mathbb{Q}	Closure	Commutative	Associative	Multiplication is distributive over + +-
+	\checkmark	\checkmark	\checkmark	\checkmark
-	\checkmark	\times	\times	\checkmark
\times	\checkmark	\checkmark	\checkmark	-
\div	\times	\times	\times	-

Sura's -8 th Std - Mathematics

$\square \quad 0$ and 1 are respectively the additive and the multiplicative identities of rational numbers.
$\square \quad$ The additive inverse for $\frac{a}{b}$ is $\frac{-a}{b}$ and vice - versa.

- The reciprocal or the multiplicative inverse of a rational number $\frac{a}{b}$ is $\frac{b}{a}$ since $\frac{a}{b} \times \frac{b}{a}=1$.
$\square \quad$ A natural number n is called a square number, if we can find another natural number m such that $n=m^{2}$.
- The square root of a number n, written as \sqrt{n} (or) $n^{\frac{1}{2}}$, is the number that gives n when multiplied by itself.
$\square \quad$ The number of times a prime factor occurs in the square is equal to twice the number of times it occurs in the prime factorization of the number.
$\square \quad$ For any two positive numbers a and b. we have
(i) $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ and (ii) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}(b \neq 0)$
$\square \quad$ If you multiply a number by itself and then by itself again, the result is a cube number.
\square The cube root of a number is the value that when cubed gives the original number.
$\square \quad$ An expression that represents repeated multiplication of the same factor is called a power.
$\square \quad$ The exponent corresponds to the number of times the base is used as a factor.
$\square \quad$ Laws of Exponents: (i) $a^{m} \times a^{n}=a^{m+n}$ (ii) $\frac{a^{m}}{a^{n}}=a^{m-n}$ (iii) $\left(a^{m}\right)^{n}=a^{m n}$
$\square \quad$ Other results: (i) $a^{0}=1$ (ii) $a^{-m}=\frac{1}{a^{m}}$ (iii) $a^{m} \times b^{m}=(a b)^{m}$ (iv) $\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$

Recap

1. The simplest form of $\frac{\mathbf{1 2 5}}{200}$ is \qquad .

Sol.

$$
\frac{125}{200}=\frac{125 \div 25}{200 \div 25}=\frac{5}{8}
$$

2. Which of the following is not an equivalent fraction of $\frac{8}{12}$?
(A) $\frac{2}{3}$
(B) $\frac{16}{24}$
(C) $\frac{32}{60}$
(D) $\frac{24}{36}$
[Ans: (C) $\frac{\mathbf{3 2}}{\mathbf{6 0}}$]
Sol.

$$
\begin{aligned}
\frac{8}{12} & =\frac{8 \div 4}{12 \div 4}=\frac{2}{3} \\
\frac{8}{12} & =\frac{8 \times 2}{12 \times 2}=\frac{16}{24} \\
\frac{8}{12} & =\frac{8 \times 3}{12 \times 3}=\frac{24}{36} \\
\frac{32}{60} & =\frac{32 \div 5}{60 \div 5}=\frac{6.4}{12}
\end{aligned}
$$

$$
\therefore \frac{32}{60} \text { is not an equivalent fraction of } \frac{8}{12} \text {. }
$$

3. Which is bigger $\frac{4}{5}$ or $\frac{8}{9}$?

Sol. LCM of 5 and $9=45$

$$
\begin{aligned}
& \frac{4}{5}=\frac{4 \times 9}{5 \times 9}=\frac{36}{45} \\
& \frac{8}{9}=\frac{8 \times 5}{9 \times 5}=\frac{40}{45} \\
& \therefore \quad \frac{40}{45}>\frac{36}{45} \\
& \frac{8}{9}>\frac{4}{5} \\
& \frac{8}{9} \text { is bigger than } \frac{4}{5} .
\end{aligned}
$$

4. Add the fractions: $\frac{3}{5}+\frac{5}{8}+\frac{7}{10}$.

Sol.

$$
\begin{aligned}
\text { LCM of } 5,8,10 & =5 \times 2 \times 4 \\
& =40 \\
\frac{3}{5}+\frac{5}{8}+\frac{7}{10} & =\frac{(3 \times 8)+(5 \times 5)+(7 \times 4)}{40} \\
& =\frac{24+25+28}{40} \\
& =\frac{77}{40}=1 \frac{37}{40}
\end{aligned}
$$

5. Simplify : $\frac{1}{8}-\left(\frac{1}{6}-\frac{1}{4}\right)$.

Sol.

$$
\begin{aligned}
\frac{1}{8}-\left(\frac{1}{6}-\frac{1}{4}\right) & =\frac{1}{8}-\left[\frac{(1 \times 2)-(1 \times 3)}{12}\right] \\
& =\frac{1}{8}-\left(\frac{2-3}{12}\right) \\
& =\frac{1}{8}-\left(-\frac{1}{12}\right) \\
& =\frac{1}{8}+\frac{1}{12}=\frac{(1 \times 3)+(1 \times 2)}{24} \\
& =\frac{3+2}{24}=\frac{5}{24}
\end{aligned}
$$

6. Multiply $2 \frac{3}{5}$ and $1 \frac{4}{7}$.

Sol.

$$
2 \frac{3}{5} \times 1 \frac{4}{7}=\frac{13}{5} \times \frac{11}{7}=\frac{143}{35}=4 \frac{3}{35}
$$

7. Divide $\frac{7}{36}$ by $\frac{35}{81}$.

Sol.

$$
\frac{7}{36} \div \frac{35}{81}=\frac{7}{36} \times \frac{81}{35}=\frac{9}{20}
$$

8. Fill in the boxes : $\frac{\square}{66}=\frac{70}{\square}=\frac{28}{44}=\frac{\square}{121}=\frac{7}{\square}$.

Sol.

$$
\begin{aligned}
\frac{28}{44} & =\frac{28 \div 4}{44 \div 4}=\frac{7}{11} \\
\frac{7}{11} & =\frac{28}{44}=\frac{42}{66}=\frac{70}{110}=\frac{77}{121} \\
\frac{42}{66} & =\frac{70}{110}=\frac{28}{44}=\frac{77}{121}=\frac{7}{11} .
\end{aligned}
$$

Sura's

9. In a city, $\frac{7}{20}$ of the population is women and $\frac{1}{4}$ are children. Find the fraction of the population of men.
Sol. Let the total population = 1

$$
\begin{aligned}
\text { Population of men } & =\text { Total population - Women - Children } \\
& =1-\frac{7}{20}-\frac{1}{4}=\frac{20}{20}-\frac{7}{20}-\frac{5}{20} \\
& =\frac{20-7-5}{20}=\frac{8}{20}=\frac{2}{5}
\end{aligned}
$$

$$
\therefore \quad \text { Population of men }=\frac{2}{5}
$$

10. Represent $\left(\frac{1}{2}+\frac{1}{4}\right)$ by a diagram.

Sol.

Tivy these

1. Is the number - 7 a rational number ? Why?

Sol. Yes -7 is a rational number. Because $-7=\frac{-14}{2}=\frac{p}{q}$
2. Write any $\mathbf{6}$ rational numbers between $\mathbf{0}$ and 1.

Sol. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}$

Tiv these

Write the decimal forms of the following rational numbers.
Sol.

1. $\frac{4}{5}=\frac{4 \times 20}{5 \times 20}=\frac{80}{100}=0.80$
2. $\frac{\mathbf{6}}{\mathbf{2 5}}=\frac{6 \times 4}{25 \times 4}=\frac{24}{100}=0.24$

Sura's mer 8th Std - Mathematics

3. $\frac{\mathbf{4 8 6}}{\mathbf{1 0 0 0}}=0.486$
4. $\frac{\mathbf{1}}{\mathbf{9}}=0.11 \ldots$
0.11
$9 \lcm{10}$
$\left.\begin{array}{r}9 \\ \hline 10 \\ 9 \\ \hline 1\end{array}\right]$
5. $\mathbf{3} \frac{\mathbf{1}}{\mathbf{4}}=\frac{13}{4}=3.25$

$$
\begin{array}{r}
3.25 \\
4 \lcm{13} \\
12 \\
\hline 10 \\
8 \\
\hline 20 \\
20 \\
\hline 0
\end{array}
$$

6. $-2 \frac{\mathbf{3}}{\mathbf{5}}=\frac{-13}{5}=-2.6$

2.6
$5 \lcm{13}$
10
30
30

TRY THESE

1. $\frac{7}{3}=\frac{?}{9}=\frac{49}{?}=\frac{-21}{?}$

$$
\begin{aligned}
\frac{7}{3} & =\frac{7 \times 3}{3 \times 3}=\frac{21}{9} \\
\frac{7}{3} & =\frac{7 \times 7}{3 \times 7}=\frac{49}{21} \\
\frac{7}{3} & =\frac{7 \times(-3)}{3 \times(-3)}=\frac{-21}{-9} \\
\therefore \frac{7}{3} & =\frac{21}{9}=\frac{49}{21}=\frac{-21}{-9}
\end{aligned}
$$

2. $\frac{-2}{5}=\frac{?}{10}=\frac{6}{?}=\frac{-8}{?}$

$$
\frac{-2}{5}=\frac{-2 \times 2}{5 \times 2}=\frac{-4}{10}
$$

$$
\begin{aligned}
\frac{-2}{5} & =\frac{-2 \times-3}{5 \times-3}=\frac{6}{-15} \\
\frac{-2}{5} & =\frac{-2 \times 4}{5 \times 4}=\frac{-8}{20} \\
\therefore \frac{-2}{5} & =\frac{-4}{10}=\frac{6}{-15}=\frac{-8}{20}
\end{aligned}
$$

TRY these

Page No. 7

1. Which of the following pairs represents equivalent rational numbers?
(i) $\frac{-6}{4}, \frac{18}{-12}$
(ii) $\frac{-4}{-20}, \frac{1}{-5}$
(iii) $\frac{-12}{-17}, \frac{60}{85}$
(i) $\frac{-6}{4}=\frac{-6 \times 3}{4 \times 3}=\frac{-18}{12}$
$\therefore \frac{-6}{4}$ equivalent to $\frac{-18}{12}$
(ii) $\frac{-4}{-20}=\frac{-4 \div(-4)}{-20 \div(-4)}=\frac{1}{5} \neq-\frac{1}{5}$
$\therefore \frac{-4}{-20}$ not equivalent to $\frac{1}{-5}$
(iii) $\frac{-12}{-17}=\frac{-12 \times-5}{-17 \times-5}=\frac{60}{85}$
$\therefore \frac{-12}{-17}$ equivalent to $\frac{60}{85}$
2. Find the standard form of :
(i) $\frac{36}{-96}$
(ii) $\frac{-56}{-72}$
(iii) $\frac{27}{18}$
(i) $\frac{36}{-96}=\frac{-36 \div 12}{96 \div 12}=\frac{-3}{8}$
(ii) $\frac{-56}{-72}=\frac{-56 \div(-8)}{-72 \div(-8)}=\frac{7}{9}$
(iii) $\frac{27}{18}=1 \frac{9}{18}=1 \frac{1}{2}$

Sura's

3. Mark the following rational numbers on a number line.
(i) $\frac{-2}{3}$
(ii) $\frac{-8}{-5}$
(iii) $\frac{5}{-4}$

Sol. (i) $\frac{-2}{3}$ lies between 0 and -1 .
The unit part between 0 and -1 is divided into 3 equal parts and second part is taken.

(ii) $\frac{-8}{-5}=1 \frac{3}{5}$
$1 \frac{3}{5}$ lies between 1 and 2 . The unit part between 1 and 2 is divided into 5 equal parts and the third part is taken.

(iii) $\frac{5}{-4}=-\frac{5}{4}=-1 \frac{1}{4}$
$-1 \frac{1}{4}$ lies between -1 and -2 . The unit part between -1 and -2 is divided into four equal parts and the first part is taken.

(2) THINK

Are there any rational numbers between $\frac{-7}{11}$ and $\frac{6}{-11}$?
Sol. $\frac{-7}{11}=\frac{-70}{110} ; \frac{6}{-11}=\frac{-60}{110}$
$\therefore \frac{-61}{110}, \frac{-62}{110} \ldots . \frac{-69}{110}$
\therefore Thre are many rational numbers between $\frac{-7}{11}$ and $\frac{6}{-11}$

Sura's $=8$ th Std - Mathematics

Exercise 1.1

1. Fill in the blanks:
(i) $\frac{-19}{5}$ lies between the integers \qquad and \qquad .
[Ans: -4 and -3]
(ii) The decimal form of the rational number $\frac{15}{-4}$ is \qquad .
[Ans: -3.75]
(iii) The rational numbers $\frac{-8}{3}$ and $\frac{8}{3}$ are equidistant from \qquad .
[Ans: 0]
(iv) The next rational number in the sequence $\frac{-15}{24}, \frac{20}{-32}, \frac{-25}{40}$ is \qquad . [Ans: $\frac{30}{-48}$]
(v) The standard form of $\frac{58}{-78}$ is \qquad .
[Ans: $\frac{-29}{39}$]
2. Say True or False.
(i) 0 is the smallest rational number.
[Ans: False]
(ii) $\frac{-4}{5}$ lies to the left of $\frac{-3}{4}$
[Ans: True]
(iii) $\frac{-19}{5}$ is greater than $\frac{15}{-4}$
[Ans: False]
(iv) The average of two rational numbers lies between them.
[Ans: True]
(v) There are an unlimited number of rational numbers between 10 and 11.
[Ans: True]
3. Find the rational numbers represented by each of the question marks marked on the following number line.
(i)

(ii)

(iii)

Sol. (i) The number lies between -3 and -4 . The unit part between -3 and -4 is divided into 3 equal parts and the second part is asked.
\therefore The required number is $-3 \frac{2}{3}=-\frac{11}{3}$.
(ii) The required number lies between 0 and -1 . The unit part between 0 and -1 is divided into 5 equal parts, and the second part is taken.
\therefore The required number is $-\frac{2}{5}$

Sura's

(iii) The required number lies between 1 and 2 . The unit part between 1 and 2 is divided into 4 equal parts and the third part is taken.
\therefore The required number is $1 \frac{3}{4}=\frac{7}{4}$
4. The points S, Y, N, C, R, A, T, I and O on the number line are such that $C N=N Y=Y S$ and $R A=A T=T I=I O$. Find the rational numbers represented by the letters Y, N, A, T and I .

Sol.

$$
\begin{aligned}
\mathrm{Y} & =-2+\frac{1}{3}=\frac{-6+1}{3}=\frac{-5}{3} \\
\mathrm{~N} & =\frac{-5}{3}+\frac{1}{3}=\frac{-5+1}{3}=\frac{-4}{3} \\
\mathrm{RA} & =\mathrm{AT}=\mathrm{TI}=\mathrm{IO}=\frac{1}{4} \\
\mathrm{~A} & =2+\frac{1}{4}=\frac{8+1}{4}=\frac{9}{4} \\
\mathrm{~T} & =\frac{9}{4}+\frac{1}{4}=\frac{9+1}{4}=\frac{10}{4} \\
\mathrm{I} & =\frac{10}{4}+\frac{1}{4}=\frac{10+1}{4}=\frac{11}{4}
\end{aligned}
$$

5. Draw the number line and represent the following rational numbers on it.
(i) $\frac{9}{4}$
(ii) $\frac{-8}{3}$
(iii) $\frac{-17}{-5}$
(iv) $\frac{15}{-4}$

Sol. (i) $\frac{9}{4}=2 \frac{1}{4}$
$\therefore \frac{9}{4}$ lies between 2 and 3 .

(ii) $\frac{-8}{3}=-2 \frac{2}{3}$
$-2 \frac{2}{3}$ lies between -2 and -3 .
$-2 \frac{2}{3}=\frac{-8}{3}$

This is Only for Sample For Full Book Order Online or Available at All Leading Bookstores
(iii) $\frac{-17}{-5}=3 \frac{2}{5}$
$3 \frac{2}{5}$ lies between 3 and 4 in the number line.

(iv) $\frac{15}{-4}=-3 \frac{3}{4}$
$-3 \frac{3}{4}$ lies between -3 and -4 .

6. Write the decimal form of the following rational numbers.
(i) $\frac{1}{11}$
(ii) $\frac{13}{4}$
(iii) $\frac{-18}{7}$
(iv) $1 \frac{2}{5}$
(v) $-3 \frac{1}{2}$

Sol. (i) $\frac{1}{11}=0.0909 \ldots$
0.0909
$11 \lcm{100}$
$\frac{99}{100}$
$\frac{99}{1}$
(ii) $\frac{13}{4}=3.25$
4) $\begin{array}{r}3.25 \\ \hline 12\end{array}$
$\frac{12}{10}$
$\frac{8}{20}$
20
0

Sura's

(iii) $\frac{-18}{7}=-2.571428571428 \ldots$
(iv) $1 \frac{2}{5}=\frac{7}{5}=1.4$
5) $\begin{array}{r}1.4 \\ 7 \\ 5\end{array}$
7) $\begin{array}{r}18 \\ \frac{14}{40} \\ \hline\end{array}$
$\frac{5}{20}$
$\frac{35}{50}$
20
$\frac{49}{10}$
$\frac{7}{30}$
$\frac{28}{20}$
$\frac{14}{60}$
$\frac{56}{4}$
(v) $- 3 \frac { 1 } { 2 } = - \frac { 7 } { 2 } = - 3 . 5 \quad 2 \longdiv { 3 . 5 }$
$\begin{array}{r}6 \\ \hline 10 \\ 10 \\ \hline 0\end{array}$
7. List any five rational numbers between the given rational numbers.
(i) -2 and 0
(ii) $\frac{-1}{2}$ and $\frac{3}{5}$
(iii) $\frac{1}{4}$ and $\frac{7}{20}$
(iv) $\frac{-6}{4}$ and $\frac{-23}{10}$

Sol. (i) -2 and 0
i.e. $\frac{-2}{1}$ and $\frac{0}{1}$

$$
\begin{aligned}
& \frac{-2}{1}=\frac{-2 \times 10}{1 \times 10}=\frac{-20}{10} \\
& \frac{0}{1}=\frac{0 \times 10}{1 \times 10}=\frac{0}{10}
\end{aligned}
$$

\therefore Five rational numbers between $\frac{-20}{10}(=-2)$ and $\frac{0}{10}(=0)$ are

$$
\frac{-20}{10}, \frac{-19}{10}, \frac{-18}{10}, \frac{-7}{10}, \frac{-6}{10}, \frac{-5}{10}, \frac{0}{10}(=0) .
$$

(ii) $\frac{-1}{2}$ and $\frac{3}{5}$

LCM of 2 and $5=2 \times 5=10$

$$
-\frac{1}{2}=\frac{-1 \times 5}{2 \times 5}=\frac{-5}{10}
$$

Sura's mer 8th Std - Mathematics

$$
\frac{3}{5}=\frac{3 \times 2}{5 \times 2}=\frac{6}{10}
$$

\therefore Five rational numbers between $\frac{-1}{2}\left(=\frac{-5}{10}\right)$ and $\frac{3}{5}\left(=\frac{6}{10}\right)$ are $\frac{-3}{10}, \frac{-1}{10}, 0, \frac{1}{10}, \frac{2}{10}, \frac{5}{10}$
(iii) $\frac{1}{4}$ and $\frac{7}{20}$

$$
\begin{aligned}
\frac{1}{4} & =\frac{1 \times 15}{4 \times 15}=\frac{15}{60} \\
\frac{7}{20} & =\frac{7 \times 3}{20 \times 3}=\frac{21}{60}
\end{aligned}
$$

\therefore Five rational numbers between $\frac{1}{4}\left(=\frac{15}{60}\right)$ and $\frac{7}{20}\left(=\frac{21}{60}\right)$ are $\frac{16}{60}, \frac{17}{60}, \frac{18}{60}, \frac{19}{60}, \frac{20}{60}$
(iv) $\frac{-6}{4}$ and $\frac{-23}{10}$

$$
\begin{aligned}
\frac{-6}{4} & =\frac{-6 \times 5}{4 \times 5}=\frac{-30}{20} \\
\frac{-23}{10} & =\frac{23 \times 2}{10 \times 2}=\frac{-46}{20}
\end{aligned}
$$

\therefore Five rational numbers between $\frac{-6}{4}$
$-31-32-33-34-35$$\left(=\frac{-30}{20}\right)$ and $\frac{-23}{10}\left(=\frac{-46}{20}\right)$ are $\frac{-31}{20}, \frac{-32}{20}, \frac{-33}{20}, \frac{-34}{20}, \frac{-35}{20}$.
8. Use the method of average to write 2 rational numbers between $\frac{14}{5}$ and $\frac{16}{3}$.

Sol. The average of a and b is $\frac{1}{2}(a+b)$
The average of $\frac{14}{5}$ and $\frac{16}{3}$ is $C_{1}=\frac{1}{2}\left(\frac{14}{5}+\frac{16}{3}\right)$

$$
\begin{align*}
& \mathrm{C}_{1}=\frac{1}{2}\left(\frac{42+80}{15}\right) \\
& \mathrm{C}_{1}=\frac{122}{30} \\
& \mathrm{C}_{1}=\frac{61}{15} \\
& \frac{14}{5}<\frac{61}{15}<\frac{16}{3} \tag{1}
\end{align*}
$$

The average of $\frac{14}{5}$ and $\frac{61}{15}$ is $C_{2}=\frac{1}{2}\left(\frac{14}{5}+\frac{61}{15}\right)$

$$
\begin{aligned}
& C_{2}=\frac{1}{2} \times\left(\frac{42+61}{15}\right) \\
& C_{2}=\frac{1}{2} \times \frac{103}{15}=\frac{103}{30}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \frac{14}{5}<\frac{103}{30}<\frac{61}{15} \tag{2}
\end{equation*}
$$

From (1), (2) we get, $\quad \frac{14}{5}<\frac{103}{30}<\frac{61}{15}<\frac{16}{3}$
9. Compare the following pairs of rational numbers.
(i) $\frac{-11}{5}, \frac{-21}{8}$
(ii) $\frac{3}{-4}, \frac{-1}{2}$
(iii) $\frac{2}{3}, \frac{4}{5}$

Sol. (i) $\frac{-11}{5}, \frac{-21}{8}$
LCM of 5,8 is 40

$$
\begin{aligned}
\frac{-11}{5} & =\frac{-11 \times 8}{5 \times 8}=\frac{-88}{40} \\
\frac{-21}{8} & =\frac{-21 \times 5}{8 \times 5}=\frac{-105}{40} \\
\frac{-105}{40} & <\frac{-88}{40} \\
\therefore \frac{-21}{8} & <\frac{-11}{5}
\end{aligned}
$$

(ii) $\frac{3}{-4}, \frac{-1}{2}$

$$
\text { LCM of } 4 \text { and } 2=4
$$

$$
\begin{aligned}
\frac{3}{-4} & =\frac{-3}{4} \\
\frac{-1}{2} & =\frac{-1 \times 2}{2 \times 2}=\frac{-2}{4} \\
\frac{3}{-4} & <\frac{-2}{4} \\
-\frac{3}{4} & <\frac{-1}{2}
\end{aligned}
$$

(iii) $\frac{2}{3}, \frac{4}{5}$

LCM of 3 and 5 is 15 .

$$
\begin{aligned}
\frac{2}{3} & =\frac{2 \times 5}{3 \times 5}=\frac{10}{15} \\
\frac{4}{5} & =\frac{4 \times 3}{5 \times 3}=\frac{12}{15} \\
\frac{10}{15} & <\frac{12}{15} \\
\therefore \quad \frac{2}{3} & <\frac{4}{5}
\end{aligned}
$$

Sura's -8 th Std - Mathematics

10. Arrange the following rational numbers in ascending and descending order.
(i) $\frac{-5}{12}, \frac{-11}{8}, \frac{-15}{24}, \frac{-7}{-9}, \frac{12}{36}$
(ii) $\frac{-17}{10}, \frac{-7}{5}, 0, \frac{-2}{4}, \frac{-19}{20}$

Sol. (i) $\frac{-5}{12}, \frac{-11}{8}, \frac{-15}{24}, \frac{-7}{-9}, \frac{12}{36}$
LCM of $12,8,24,9,36$ is $4 \times 3 \times 2 \times 3=72$

$$
\begin{aligned}
\frac{-5}{12} & =\frac{-5 \times 6}{12 \times 6}=\frac{-30}{72} \\
\frac{-11}{8} & =\frac{-11 \times 9}{8 \times 9}=\frac{-99}{72} \\
\frac{-15}{24} & =\frac{-15 \times 3}{24 \times 3}=\frac{-45}{72} \\
\frac{-7}{-9} & =\frac{7 \times 8}{9 \times 8}=\frac{56}{72} \\
\frac{12}{36} & =\frac{12 \times 2}{36 \times 2}=\frac{24}{72}
\end{aligned}
$$

Hint:	
4	$12,8,24,9,36$
	$3,2,6,-9,9$
2	$1,2,2,3,3$
3	$1,1,1,3,3$
	$1,1,1,1,1$

Now comparing the numerators $-30,-99,-45,56,24$ we get $56>24>-30>-45>-99$
i.e $\frac{56}{72}>\frac{24}{72}>\frac{-30}{72}>\frac{-45}{72}>\frac{-99}{72}$ and so $\frac{-7}{-9}>\frac{12}{36}>\frac{-5}{12}>\frac{-15}{24}>\frac{-11}{8}$
\therefore Descending order $\frac{-7}{-9}>\frac{12}{36}>\frac{-5}{12}>\frac{-15}{24}>\frac{-11}{8}$
Ascending order $\frac{-11}{8}<\frac{-15}{24}<\frac{-5}{12}<\frac{12}{36}<\frac{-7}{-9}$
(ii) $\frac{-17}{10}, \frac{-7}{5}, 0, \frac{-2}{4}, \frac{-19}{20}$

LCM of $10,5,4,20$ is $5 \times 2 \times 2=20$

$$
\begin{aligned}
\frac{-17}{10} & =\frac{-17 \times 2}{10 \times 2}=\frac{-34}{20} \\
\frac{-7}{5} & =\frac{-7 \times 4}{5 \times 4}=\frac{-28}{20} \\
\frac{-2}{4} & =\frac{-2 \times 5}{4 \times 5}=\frac{-10}{20} \\
\frac{-19}{20} & =\frac{-19}{20}
\end{aligned}
$$

Negative numbers are less then zero.
\therefore Arranging the numerators we get $-34<-28<-19<-10<0$
$\therefore \frac{-34}{20}<\frac{-28}{20}<\frac{-19}{20}<\frac{-10}{20}<0$
Ascending order $=\frac{-17}{10}<\frac{-7}{5}<\frac{-19}{20}<\frac{-2}{4}<0$
Descending order $0>\frac{-2}{4}>\frac{-19}{20}>\frac{-7}{5}>\frac{-17}{10}$

[1] Sura's 8th Std - Mathematics

Objective Type Questions

11. The number which is subtracted from $\frac{-6}{11}$ to get $\frac{8}{9}$ is
(A) $\frac{34}{99}$
(B) $\frac{-142}{99}$
(C) $\frac{142}{99}$
(D) $\frac{-34}{99}$

Hint:

Let x be the number to be subtracted
[Ans: (B) $\frac{-142}{99}$]

$$
\begin{aligned}
\frac{-6}{11}-x & =\frac{8}{9} \\
\frac{-6}{11}-\frac{8}{9} & =x \\
x & =\frac{(-6 \times 9)+(-8 \times 11)}{11 \times 9}=\frac{-54+(-88)}{99}=\frac{-142}{99}
\end{aligned}
$$

12. Which of the following pairs is equivalent?
(A) $\frac{-20}{12}, \frac{5}{3}$
(B) $\frac{16}{-30}, \frac{-8}{15}$
(C) $\frac{-18}{36}, \frac{-20}{44}$
(D) $\frac{7}{-5}, \frac{-5}{7}$
[Ans: (B) $\frac{16}{-30}, \frac{-8}{15}$]
Hint:

$$
\begin{aligned}
& \frac{-20}{12}=\frac{-20 \div 4}{12 \div 4}=\frac{-5}{3} \neq \frac{5}{3} \\
& \frac{16}{-30}=\frac{-16 \div 2}{30 \div 2}=\frac{-8}{15} \\
& \frac{-18}{36}=\frac{-18 \div 9}{36 \div 9}=\frac{-2}{4}=\frac{-2 \times 11}{4 \times 11}=\frac{-22}{44} \neq \frac{-20}{44}
\end{aligned}
$$

$\therefore \frac{16}{-30}$ and $\frac{-8}{15}$ are equivalent fraction.
13. $\frac{-5}{4}$ is a rational number which lies between \qquad .
(A) 0 and $\frac{-5}{4}$
(B) - 1 and 0
(C) -1 and -2
(D) -4 and -5
[Ans: (C) -1 and -2]
Hint:

$$
\frac{-5}{4}=-1 \frac{1}{4}
$$

$\therefore \frac{-5}{4}$ lies between -1 and -2 .
14. Which of the following rational numbers is the greatest?
(A) $\frac{-17}{24}$
(B) $\frac{-13}{16}$
(C) $\frac{7}{-8}$
(D) $\frac{-31}{32}$

Hint: LCM of 24, 16, 8, $32=8 \times 2 \times 3 \times 2=96$
[Ans: (A) $\frac{-17}{24}$]

$$
\frac{-17}{24}=\frac{-17 \times 4}{24 \times 4}=\frac{-68}{96}
$$

Sura's 8th Std - Mathematics

$$
\begin{array}{rlr|l}
\frac{-13}{16} & =\frac{-13 \times 6}{16 \times 6}=\frac{-78}{96} & 8 & 24,16,8,32 \\
& =\frac{-7 \times 12}{8 \times 12}=\frac{-84}{96} & 2 & 3,2,1,4 \\
& \frac{7,1,1,2}{-8} & 2 & \frac{1,1,1,2}{1,1,1,1} \\
\frac{-31}{32} & =\frac{-31 \times 3}{32 \times 3}=\frac{-93}{96} & & \\
\frac{-93}{96} & <\frac{-84}{96}<\frac{-78}{96}<\frac{-68}{96} & & \\
\frac{-31}{32} & <\frac{7}{-8}<\frac{-13}{16}<\frac{-17}{24} & &
\end{array}
$$

$\therefore \frac{-17}{24}$ is the greatest number.
15. The sum of the digits of the denominator in the simplest form of $\frac{\mathbf{1 1 2}}{\mathbf{5 2 8}}$ is \qquad .
(A) 4
(B) 5
(C) 6
(D) 7 [Ans: (C) 6]

Hint:

$$
\frac{112}{528}=\frac{112 \div 8}{528 \div 8}=\frac{14}{66}=\frac{14 \div 2}{66 \div 2}=\frac{7}{33}
$$

Sum of digits in the denominator $=3+3=6$

($\%$ THINK

Is zero a rational number? If so, what is its additive inverse?
Sol. Yes zero is a national number. Additive inverse of zero is zero.
What is the multiplicative inverse of $\mathbf{1}$ and $\mathbf{- 1}$?
Sol. Multiplicative inverse of 1 is 1 and -1 is -1 .

TRY THESE

Divide : (i) $\frac{-7}{3}$ by $5 \quad$ (ii) 5 by $\frac{-7}{3} \quad$ (iii) $\frac{-7}{3}$ by $\frac{35}{6}$
Sol. (i)

$$
\frac{-7}{3} \div 5=\frac{-7}{3} \div \frac{5}{1}=\frac{-7}{3} \times \frac{1}{5}=\frac{-7}{15}
$$

(ii)

$$
5 \div\left(\frac{-7}{3}\right)=\frac{5}{1} \times \frac{3}{-7}=\frac{15}{-7}=-2 \frac{1}{7}
$$

(iii) $\frac{-7}{3} \div \frac{35}{62}=\frac{-\not \subset}{\not p} \times \frac{2}{6}{ }_{\substack{25 \\ 5}}=-\frac{2}{5}$

Sura's 8th Std - Mathematics

Exercise 1.2

1. Fill in the blanks:
(i) The value of $\frac{-5}{12}+\frac{7}{15}=$ \qquad . [Ans: $\frac{1}{20}$]
(ii) The value of $\left(\frac{-3}{6}\right) \times\left(\frac{18}{-9}\right)$ is \qquad .
[Ans: 1]
(iii) The value of $\left(\frac{-15}{23}\right) \div\left(\frac{30}{-46}\right)$ is \qquad -.
[Ans: 1]
(iv) The rational number \qquad does not have a reciprocal.
(v) The multiplicative inverse of -1 is \qquad .
2. Say True or False.
(i) All rational numbers have an additive inverse.
[Ans: True]
(ii) The rational numbers that are equal to their additive inverses are 0 and -1 . [Ans: False]
(iii) The additive inverse of $\frac{-11}{-17}$ is $\frac{11}{17}$.
[Ans: False]
(iv) The rational number which is its own reciprocal is -1 .
[Ans: True]
(v) The multiplicative inverse exists for all rational numbers.
[Ans: False]
3. Find the sum :
(i) $\frac{7}{5}+\frac{3}{5}$
(ii) $\frac{7}{5}+\frac{5}{7}$
(iii) $\frac{6}{5}+\left(\frac{-14}{15}\right)$
(iv) $-4 \frac{2}{3}+7 \frac{5}{12}$

Sol. (i)

$$
\frac{7}{5}+\frac{3}{5}=\frac{7+3}{5}=\frac{10}{5}=2
$$

(ii) $\frac{7}{5}+\frac{5}{7}=\frac{7 \times 7+5 \times 5}{35}=\frac{49+25}{35}=\frac{74}{35}$
(iii) $\frac{6}{5}+\left(\frac{-14}{15}\right)=\frac{6 \times 3+(14)}{15}=\frac{18+(-14)}{5}=\frac{4}{5}$
(iv) $-4 \frac{2}{3}+7 \frac{5}{12}=\frac{14}{3}+\frac{18}{12}=\frac{-14 \times 4+89}{12}=\frac{-56+89}{12}=\frac{-33}{12}=\frac{-11}{4}$
4. Subtract : $\frac{-8}{44}$ from $\frac{-17}{11}$.

Sol.

$$
\frac{-17}{11}-\left(\frac{-8}{44}\right)=\frac{-17}{11}+\frac{8}{44}=\frac{-17 \times 4+8}{44}=\frac{-68+8}{44}=\frac{150}{\substack{44}} \frac{-15}{11}
$$

Sura's mer 8th Std - Mathematics

5. Evaluate : (i) $\frac{9}{132} \times \frac{-11}{3}$
(ii) $\frac{-7}{27} \times \frac{24}{-35}$

Sol. (i) $\frac{\stackrel{\not D}{\not}}{132} \times \frac{-\not K}{\not 2}=\frac{-1}{4}$
(ii) $\frac{-\not \lambda}{27} \times \frac{{ }^{8} 4}{-35}=\frac{8}{45}$
6. Divide : (i) $\frac{-21}{5}$ by $\frac{-7}{-10}$
(ii) $\frac{-3}{13} b y-3$
(iii) -2 by $\frac{-6}{15}$

Sol. (i) $\frac{-21}{5} \div \frac{-7}{-10}=\frac{-21}{\not x} \times \frac{{ }^{2}}{\not \partial}=-6$
(ii) $\frac{-3}{13} \div-3=\frac{-3}{13} \times \frac{-1}{3}=\frac{-3 \times-1}{13 \times 3}=\frac{3}{39}$
(iii) $-2 \div \frac{-6}{15}=-2 \times \frac{15}{-6}=\frac{-2 \times 15}{-6}=\frac{-30}{-6}=5$
7. Find $(a+b) \div(a-b)$ if (i) $a=\frac{1}{2}, b=\frac{2}{3}$ (ii) $a=\frac{-3}{5}, b=\frac{2}{15}$

Sol. (i)

$$
\begin{aligned}
a+b & =\frac{1}{2}+\frac{2}{3}=\frac{1 \times 3+2 \times 2}{6}=\frac{3+4}{6}=\frac{7}{6} \\
a-b & =\frac{1}{2}-\frac{2}{3}=\frac{1 \times 3-2 \times 2}{6}=\frac{3-4}{6}=\frac{-1}{6} \\
(a+b) \div(a-b) & =\frac{7}{6} \div \frac{-1}{6}=\frac{7}{6} \times \frac{6}{-1}=-7 \\
a+b & =\frac{-3}{5}+\frac{2}{15}=\frac{-3 \times 3+2}{15}=\frac{-9+2}{15}=\frac{-7}{15} \\
a-b & =\frac{-3}{5}-\frac{2}{15}=\frac{-3 \times 3-2}{15}=\frac{-9-2}{15}=\frac{-11}{15} \\
(a+b) \div(a-b) & =\frac{-7}{15} \div \frac{-11}{15}=\frac{-7}{15} \times \frac{15}{-11}=\frac{7}{11}
\end{aligned}
$$

(ii)
8. Simplify : $\frac{1}{2}+\left(\frac{3}{2}-\frac{2}{5}\right) \div \frac{3}{10} \times 3$ and show that it is a rational number between 11 and 12 .

Sol.

$$
\begin{aligned}
\frac{1}{2}+\left(\frac{3}{2}-\frac{2}{5}\right) \div \frac{3}{10} \times 3 & =\frac{1}{2}+\left(\frac{15-4}{10}\right) \div \frac{3}{10} \times 3=\frac{1}{2}+\frac{11}{10} \times \frac{10}{p} \times \not p \\
& =\frac{1}{2}+11=11 \frac{1}{2}=\frac{23}{2}
\end{aligned}
$$

Sura's $=8$ th Std - Mathematics

9. Simplify :
(i) $\left[\frac{11}{8} \times\left(\frac{-6}{33}\right)\right]+\left[\frac{1}{3}+\left(\frac{3}{5} \div \frac{9}{20}\right)\right]-\left[\frac{4}{7} \times \frac{-7}{5}\right]$
(ii) $\left[\frac{4}{3} \div\left(\frac{8}{-7}\right)\right]-\left[\frac{3}{4} \times \frac{4}{3}\right]+\left[\frac{4}{3} \times\left(\frac{-1}{4}\right)\right]$

Sol. (i)

$$
\begin{aligned}
& =-\frac{1}{4}+\left[\frac{1}{3}+\frac{4}{3}\right]-\left(\frac{-4}{5}\right)=-\frac{1}{4}+\frac{5}{3}+\frac{4}{5}=\frac{-15+100+48}{60}=\frac{133}{60}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& {\left[\frac{4}{3} \div\left(\frac{8}{-7}\right)\right]-\left[\frac{3}{4} \times \frac{4}{3}\right]+\left[\frac{4}{3} \times\left(\frac{-1}{4}\right)\right]=\left[\frac{\not A}{3} \times \frac{-7}{\not{ }^{\prime}}\right]-\left[\frac{\not B}{A} \times \frac{A}{\not 2}\right]+\left[\frac{A \times(-1)}{3 \times A}\right]} \\
& =\left(\frac{-7}{6}\right)-1+\left(\frac{-1}{3}\right)=\frac{-7-6+(-2)}{6}=\frac{-15}{6}=\frac{-5}{2}
\end{aligned}
$$

10. A student had multiplied a number by $\frac{4}{3}$ instead of dividing it by $\frac{4}{3}$ and got 70 more than the correct answer. Find the number.
Sol.
Let the number $=a$

$$
\begin{aligned}
a \times \frac{4}{3}-a \div \frac{4}{3} & =70 \\
a \times \frac{4}{3}-a \times \frac{3}{4} & =70 \\
a\left[\frac{4}{3}-\frac{3}{4}\right] & =70 \\
a\left[\frac{4 \times 4-3 \times 3}{12}\right] & =70 \\
a\left[\frac{16-9}{12}\right] & =70 \\
a\left[\frac{7}{12}\right] & =70 \\
a & =70 \times \frac{12}{\not 7}=120 \\
a & =120
\end{aligned}
$$

Objective Type Questions

11. The standard form of the sum $\frac{3}{4}+\frac{5}{6}+\left(\frac{-7}{12}\right)$ is \qquad .
(A) 1
(B) $\frac{-1}{2}$
(C) $\frac{1}{12}$
(D) $\frac{1}{22}$ [Ans: (A) 1]

Hint:

$$
\frac{3}{4}+\frac{5}{6}+\left(\frac{-7}{12}\right)=\frac{(3 \times 3)+(5 \times 2)+(-7)}{12}=\frac{9+10+(-7)}{12}=\frac{19-7}{12}=\frac{12}{12}=1
$$

12. $\left(\frac{3}{4}-\frac{5}{8}\right)+\frac{1}{2}=$ \qquad .
(A) $\frac{15}{64}$
(B) 1
(C) $\frac{5}{8}$
(D) $\frac{1}{16}\left[\right.$ Ans: (C) $\frac{\mathbf{5}}{\mathbf{8}}$]

Hint:

$$
\begin{aligned}
\left(\frac{3}{4}-\frac{5}{8}\right)+\frac{1}{2} & =\left(\frac{3 \times 2-5}{8}\right)+\frac{1}{2}=\frac{6-5}{8}+\frac{1}{2}=\frac{1}{8}+\frac{1}{2} \\
& =\frac{1+1 \times 4}{8}=\frac{1+4}{8}=\frac{5}{8}
\end{aligned}
$$

13. $\frac{3}{4} \div\left(\frac{5}{8}+\frac{1}{2}\right)=$ \qquad .
(A) $\frac{13}{10}$
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) $\frac{5}{8}$ [Ans: (B) $\left.\frac{\mathbf{2}}{\mathbf{3}}\right]$

Hint:

$$
\frac{3}{4} \div\left(\frac{5}{8}+\frac{1}{2}\right)=\frac{3}{4} \div\left(\frac{5+(1 \times 4)}{8}\right)=\frac{3}{4} \div\left(\frac{5+4}{8}\right)=\frac{3}{4} \div \frac{9}{8}=\frac{\not p}{\not 4} \times \frac{\not 8^{2}}{\not{ }^{2}}=\frac{2}{3}
$$

14. $\frac{3}{4} \times\left(\frac{5}{8} \div \frac{1}{2}\right)=$ \qquad .
(A) $\frac{5}{8}$
(B) $\frac{2}{3}$
(C) $\frac{15}{32}$
(D) $\frac{15}{16}\left[\right.$ Ans: (D) $\left.\frac{\mathbf{1 5}}{\mathbf{1 6}}\right]$

Hint:
$\frac{3}{4} \times\left(\frac{5}{8} \div \frac{1}{2}\right)=\frac{3}{4} \times\left(\frac{5}{8} \times \frac{\not 2}{1}\right)=\frac{3}{4} \times \frac{5}{4}=\frac{3 \times 5}{4 \times 4}=\frac{15}{16}$
15. Which of these rational numbers which have additive inverse?
(A) 7
(B) $\frac{-5}{7}$
(C) 0
(D) all of these
[Ans: (D) all of these]

Hint: Additive inverse of 7 is -7 .

Additive inverse of $\frac{-5}{7}$ is $\frac{5}{7}$.
Additive inverse of 0 is 0 .

Tiry these

The closure property on integers holds for subtraction and not for division. What about rational numbers? Verify.
Sol. Let 0 and $\frac{1}{2}$ be two rational numbers $0-\frac{1}{2}=-\frac{1}{2}$ is a rational number
\therefore Closure property for subtraction holds for rational numbers.
But consider the two rational number $\frac{5}{2}$ and 0 .

$$
\frac{5}{2} \div 0=\frac{5}{2 \times 0}=\frac{5}{0}
$$

Here denominator $=0$ and it is not a rational number.
\therefore Closure property is not true for division of rational numbers.

Operations	Fill in the blanks in the table given below of properties of Integers. (If a, b, c are integers, then $-a,-b,-c$ are also integers)					
	Closure	Commutative	Associative	Identity	Inverse	Distributive
Addition	$a+b \text { is in } \mathbb{Z}$ E.g. $\begin{aligned} & 5+(-3)=2 \\ & \Rightarrow 2 \text { is in } \mathbb{Z} \end{aligned}$	$\begin{aligned} & a+b=b+a \\ & \text { E.g. } \\ & 5+(-3)=(-3)+5 \\ & \Rightarrow 2=2 \end{aligned}$	$\begin{aligned} & (a+b)+c \\ & =a+(b+c) \end{aligned}$ E.g. $\begin{aligned} & (2+3)+(-4)=1 \\ & 2+[3+(-4)]=1 \end{aligned}$	$\begin{aligned} & a+0 \\ & =0+a=a \\ & \text { E.g. } \\ & (-4)+0 \\ & =0+(-4)=-4 \end{aligned}$	$\begin{aligned} & a+(-a) \\ & =(-a)+a=0 \\ & \text { E.g. } \\ & 5+(-5) \\ & =(-5)+5=0 \end{aligned}$	$\begin{aligned} & a \times(b+c) \\ & =(a \times b)+(a \times c) \end{aligned}$ E.g. $\begin{aligned} & 2 \times[3+(-5)]=-4 \\ & (2 \times 3)+[2 \times(-5)] \\ & =-4 \end{aligned}$
Multiplication	$a b$ is in \mathbb{Z} E.g. $2 \times 3=6$ $\Rightarrow 6$ is in \mathbb{Z}	$\begin{aligned} & a \times b=b \times a \\ & \text { E.g. } \frac{2 \times 3=3}{6=6} \\ & \Rightarrow 62 \end{aligned}$	$\begin{aligned} & (a \times b) \times c \\ & =a \times(b \times c) \end{aligned}$ E.g. $\begin{aligned} & (2 \times 3) \times(-6)=-36 \\ & 2 \times[3 \times(-6)]=-36 \end{aligned}$	$\begin{aligned} & a \times 1 \\ & =1 \times a=a \\ & \text { E.g. } 1 \times 7=7 \end{aligned}$	Does not exist	Not Applicable
Subtraction	$a-b \text { is in } \mathbb{Z}$ E.g. $\underline{7-2=5}$	Fails $\begin{aligned} & a-b \neq b-a \\ & \text { E.g. } \\ & 7-2 \neq 2-7 \\ & 5 \neq-5 \end{aligned}$	Fails $\begin{aligned} & (a-b)-c \\ & \neq a-(b-a) \end{aligned}$ E.g. $\begin{aligned} & (7-2)-5 \neq 7-(2-5) \\ & 5-5 \neq 7-(-3) \\ & 0 \neq 10 \end{aligned}$	Fails $a-0 \neq 0-a$ E.g. $\left\lvert\, \begin{aligned} & 5-0=0-5 \\ & 5=-5 \\ & 5 \neq-5 \end{aligned}\right.$	$\begin{aligned} & \text { Fails } a-(-a) \\ & \quad \neq(-a)-a \\ & \text { E.g. } \\ & 2-(-2)=4 \\ & (-2)-2=-4 \\ & 4 \neq-4 \end{aligned}$	$\begin{aligned} & a \times(b-c) \\ & =(a \times b)-(a \times c) \\ & \text { E.g. } 7 \times(5-2) \\ & =(7 \times 5)-(7 \times 5) \\ & 7 \times 3=35-14 \\ & 21=21 \end{aligned}$
Division	Fails $a \div b$ is not in \mathbb{Z} E.g. $3 \div 5=\frac{3}{5}$ does not belong to \mathbb{Z}	Fails	Fails	Fails	Fails	Not applicable

(i) Is $\frac{3}{5}-\frac{7}{8}=\frac{7}{8}-\frac{3}{5}$?

$$
\begin{aligned}
& \text { LHS }=\frac{3}{5} \div \frac{7}{8}=\frac{(3 \times 8)-(7 \times 5)}{40}=\frac{24-35}{40}=\frac{-11}{40} \\
& \text { RHS }=\frac{7}{8}-\frac{3}{5}=\frac{(7 \times 5)-(3 \times 8)}{40}=\frac{35-24}{40}=\frac{11}{40} \\
& \text { LHS } \neq \text { RHS }
\end{aligned}
$$

$$
\therefore \quad \frac{3}{5} \div \frac{7}{8} \neq \frac{7}{8}-\frac{3}{5}
$$

\therefore Subtraction of rational numbers is not commutative.
(ii) Is $\frac{\mathbf{3}}{5} \div \frac{7}{8}=\frac{7}{8} \div \frac{5}{3}$? So, what do you conclude?

Sol.

$$
\begin{aligned}
\text { LHS } & =\frac{3}{5} \div \frac{7}{8}=\frac{3}{5} \times \frac{8}{7}=\frac{24}{35} \\
\text { RHS } & =\frac{7}{8} \div \frac{5}{3}=\frac{7}{8} \times \frac{3}{5}=\frac{21}{40} \\
\therefore \text { LHS } & \neq \text { RHS } \\
\therefore \frac{3}{5} \div \frac{7}{8} & \neq \frac{7}{8} \div \frac{5}{3}
\end{aligned}
$$

$\therefore \quad$ Commutative property not hold good for division of rational numbers.

Check whether associative property holds for subtraction and division.

Sol. Consider the rational numbers $\frac{2}{3}, \frac{1}{2}$ and $\frac{3}{4}$
To verify $\left(\frac{2}{3}-\frac{1}{2}\right)-\frac{3}{4}=\frac{2}{3}-\left(\frac{1}{2}-\frac{3}{4}\right)$

$$
\begin{aligned}
\text { LHS } & =\left(\frac{2}{3}-\frac{1}{2}\right)-\frac{3}{4}=\left(\frac{(2 \times 2)-(1 \times 3)}{6}\right)-\frac{3}{4} \\
& =\left(\frac{4-3}{6}\right)-\frac{3}{4}=\frac{1}{6}-\frac{3}{4}=\frac{(1 \times 2)-(3 \times 3)}{12}=\frac{2-9}{12}=\frac{-7}{12} \\
\text { RHS } & =\frac{2}{3}-\left(\frac{1}{2}-\frac{3}{4}\right)=\frac{2}{3}-\left(\frac{2-3}{4}\right)=\left(\frac{2}{3}-\left(\frac{-1}{4}\right)\right) \\
& =\frac{2}{3}+\frac{1}{4}=\frac{(2 \times 4)+(1 \times 3)}{12}=\frac{8+3}{12}=\frac{11}{12} \\
\text { LHS } & \neq \text { RHS } \\
\therefore\left(\frac{2}{3}-\frac{1}{2}\right)-\frac{3}{4} & \neq \frac{2}{3}-\left(\frac{1}{2}-\frac{3}{4}\right)
\end{aligned}
$$

\therefore Associative property not holds for subtraction of rational numbers
Also to verify $\left(\frac{2}{3} \div \frac{1}{2}\right) \div \frac{3}{4}=\frac{2}{3} \div\left(\frac{1}{2} \div \frac{3}{4}\right)$

Surd's

$$
\begin{aligned}
\text { LHS } & =\left(\frac{2}{3} \div \frac{1}{2}\right) \div \frac{3}{4}=\left(\frac{2}{3} \times \frac{2}{1}\right) \div \frac{3}{4} \\
& =\frac{4}{3} \div \frac{3}{4}=\frac{4}{3} \times \frac{4}{3}=\frac{16}{9} \\
\text { RHS } & =\frac{2}{3} \div\left(\frac{1}{2} \div \frac{3}{4}\right)=\frac{2}{3} \div\left(\frac{1}{2} \times \frac{4}{3}\right)=\frac{2}{3} \div\left(\frac{2}{3}\right) \\
& =\frac{2}{3} \times \frac{3}{2}=1 \\
\text { LHS } & \neq \text { RHS }
\end{aligned}
$$

i.e. $\quad\left(\frac{2}{3} \div \frac{1}{2}\right) \div \frac{3}{4} \neq \frac{2}{3} \div\left(\frac{1}{2} \div \frac{3}{4}\right)$
\therefore Associative property does not hold for division of rational numbers.

Exercise 1.3

1. Verify the closure property for addition and multiplication for the rational numbers $\frac{-5}{7}$ and $\frac{8}{9}$.

Sol. Closure property for addition.
Let $a=\frac{-5}{7}$ and $b=\frac{8}{9}$ be the given rational numbers.

$$
\begin{aligned}
a+b & =\frac{-5}{7}+\frac{8}{9} \\
& =\frac{(-5 \times 9)+(8 \times 7)}{7 \times 9} \\
& =\frac{-45+56}{63}=\frac{11}{63} \text { is in Q. }
\end{aligned}
$$

i.e

$$
a+b=\frac{-5}{7}+\frac{8}{9}=\frac{11}{63} \text { is in } \mathrm{Q} .
$$

$\therefore \quad$ Closure property is true for addition of rational numbers.
Closure property for multiplication
Let

$$
\begin{aligned}
a & =\frac{-5}{7} \text { and } \mathrm{b}=\frac{8}{9} \\
a \times b & =\frac{-5}{7} \times \frac{8}{9}=\frac{-40}{63} \text { is in Q. }
\end{aligned}
$$

\therefore Closure property is true for multiplication of rational numbers.

Sura's mer 8th Std - Mathematics

2. Verify the commutative property for addition and multiplication for the rational numbers $\frac{-10}{11}$ and $\frac{-8}{33}$.
Sol. Let $a=\frac{-10}{11}$ and $b=\frac{-8}{33}$ be the given rational numbers.

$$
\begin{align*}
\text { Now } a+b & =\frac{-10}{11}+\left(\frac{-8}{33}\right)=\frac{(-10 \times 3)+(-8 \times 1)}{33}=\frac{-30+(-8)}{33} \\
a+b & =\frac{-38}{33} \tag{1}\\
b+a & =\frac{-8}{33}+\left(\frac{-10}{11}\right)=\frac{(-8 \times 1)+((-10) \times 3)}{33}=\frac{-8+(-30)}{33} \\
b+a & =\frac{-38}{33} \tag{2}
\end{align*}
$$

From (1) and (2)
$a+b=b+a$ and hence addition is commutative for rational numbers.

$$
\begin{align*}
\text { Further } \begin{aligned}
& a \times b=\frac{-10}{11} \times\left(\frac{-8}{33}\right)=\frac{80}{363} \\
& a \times b=\frac{80}{363} \\
& b \times a=\frac{-8}{33} \times\left(\frac{-10}{11}\right)=\frac{80}{363} \\
& b \times a=\frac{80}{363} \\
& a \times b=b \times a
\end{aligned}
\end{align*}
$$

From (3) and (4) $a \times b=b \times a$
Hence multiplication is commutative for rational numbers.
3. Verify the associative property for addition and multiplication for the rational numbers $\frac{-7}{9}, \frac{5}{6}$ and $\frac{-4}{3}$.

Let $a=\frac{-7}{9}, b=\frac{5}{6}, c=\frac{-4}{3}$ be the given rational numbers.

$$
\begin{align*}
(a+b)+c & =\left(\frac{-7}{9}+\frac{5}{6}\right)+\left(\frac{-4}{3}\right)=\left(\frac{-7 \times 2+5 \times 3}{18}\right)+\left(\frac{-4}{3}\right) \\
& =\left(\frac{-14+15}{18}\right)+\left(\frac{-4}{3}\right)=\frac{1}{18}+\left(\frac{-4}{3}\right) \\
& =\frac{1+(-4) \times 6}{18}=\frac{1+(-24)}{18}=\frac{-23}{18} \tag{1}\\
a+(b+c) & =-\frac{7}{9}+\left(\frac{5}{6}+\frac{(-4)}{3}\right)=\frac{-7}{9}+\left(\frac{5+(-4) 2}{6}\right) \\
& =\frac{-7}{9}+\left(\frac{5+(-8)}{6}\right)=-\frac{7}{9}+\left(\frac{-3}{6}\right)=-\frac{7}{9}+\left(\frac{-1}{2}\right) \\
& =\frac{-7 \times 2+(-1) \times 9}{18}=\frac{-14+(-9)}{18}=\frac{-23}{18} \tag{2}
\end{align*}
$$

Sura's

From (1) and (2), $\quad(a+b)+c=a+(b+c)$ is true for rational numbers.
Now

$$
\begin{align*}
(a \times b) \times c & =\left(\frac{-7}{9} \times \frac{5}{6}\right) \times\left(\frac{-4}{3}\right)=\left(\frac{-7 \times 5}{9 \times 6}\right) \times\left(\frac{-4}{3}\right) \\
& =\frac{-35}{54} \times \frac{-4}{3}=\frac{-35 \times(-4)}{54 \times 3}=\frac{70}{81} \tag{1}\\
a \times(b \times c) & =\frac{-7}{9} \times\left(\frac{5}{6} \times \frac{-4}{3}\right)=\frac{-7}{9} \times \frac{5 \times(-2)}{3 \times 3} \\
& =\frac{-7}{9} \times \frac{(-10)}{9}=\frac{70}{81} \tag{2}
\end{align*}
$$

From (1) and (2) $(a \times b) \times c=a \times(b \times c)$ is true for addition and multiplication for the rational numbers.
Thus associative property.
4. Verify the distributive property $a \times(b+c)=(a \times b)+(a+c)$ for the rational numbers $a=\frac{-1}{2}, b=\frac{2}{3}$ and $c=\frac{-5}{6}$.
Sol. Given the rational number $a=\frac{-1}{2} ; b=\frac{2}{3}$ and $c=\frac{-5}{6}$

$$
\begin{align*}
a \times(b+c) & =\frac{-1}{2} \times\left(\frac{2}{3}+\left(\frac{-5}{6}\right)\right)=\frac{-1}{2} \times\left(\frac{(2 \times 2)+(-5 \times 1)}{6}\right) \\
& =\frac{-1}{2} \times\left(\frac{4+(-5)}{6}\right)=\frac{-1}{2} \times\left(\frac{-1}{6}\right) \\
a \times(b+c) & =\frac{1}{12} \tag{1}\\
(a \times b)+(a \times c) & =\left(\frac{-1}{2} \times \frac{2}{3}\right)+\left(\frac{-1}{2} \times\left(\frac{-5}{6}\right)\right) \\
& =\frac{-2}{6}+\frac{5}{12}=\frac{(-2 \times 2)+5 \times 1}{12}=\frac{-4+5}{12} \\
(a \times b)+(a \times c) & =\frac{1}{12} \tag{2}
\end{align*}
$$

From (1) and (2) we have $a \times(b+c)=(a \times b)+(a \times c)$ is true.
Hence multiplication is distributive over addition for rational numbers.
5. Verify the identity property for addition and multiplication for the rational numbers $\frac{15}{19}$ and $\frac{-18}{25}$.

$$
\begin{aligned}
\frac{15}{19}+0 & =\frac{15}{19}+\frac{0}{19}=\frac{15+0}{19}=\frac{15}{19} \\
\frac{-18}{25}+0 & =\frac{-18}{25}+\frac{0}{25}=\frac{-18+0}{25}=\frac{-18}{25}
\end{aligned}
$$

Identify property for addition verified.

Sura's mer 8th Std - Mathematics

$$
\begin{aligned}
\frac{15}{19} \times 1 & =\frac{15 \times 1}{19}=\frac{15}{19} \\
\frac{-18}{25} \times 1 & =\frac{-18 \times 1}{25}=\frac{-18}{25}
\end{aligned}
$$

Identify property for multiplication verified.
6. Verify the additive and multiplicative inverse property for the rational numbers $\frac{-7}{17}$ and $\frac{17}{27}$.
Sol.

$$
\begin{aligned}
\frac{-7}{17}+\frac{7}{17} & =\frac{-7+7}{17}=\frac{0}{17}=0 \\
\frac{17}{27}+\left(-\frac{17}{27}\right) & =\frac{17+(-17)}{27}=\frac{0}{27}=0
\end{aligned}
$$

Additive inverse for rational numbers verified.

$$
\begin{aligned}
& \frac{-7}{17} \times \frac{17}{-7}=\frac{\not-7 \times \not T}{\not Y \times(7)}=1 \\
& \frac{17}{27} \times \frac{27}{17}=\frac{\not Y \times 27}{27 \times 17}=1
\end{aligned}
$$

Multiplicative inverse for rational numbers verified.

Objective Type Questions

7. Closure property is not true for division of rational numbers because of the number
(A) 1
(B) -1
(C) 0
(D) $\frac{1}{2} \quad[$ Ans: (C) 0$]$
8. $\frac{1}{2}-\left(\frac{3}{4}-\frac{5}{6}\right) \neq\left(\frac{1}{2}-\frac{3}{4}\right)-\frac{5}{6}$ illustrates that subtraction does not satisfy the \qquad property for rational numbers.
(A) commutative
(B) closure
(C) distributive
(D) associative
[Ans: (D) associative]
9. Which of the following illustrates the inverse property for addition?
(A) $\frac{1}{8}-\frac{1}{8}=0$
(B) $\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$
(C) $\frac{1}{8}+0=\frac{1}{8}$
(D) $\frac{1}{8}-0=\frac{1}{8}$
[Ans: (A) $\frac{1}{8}-\frac{1}{8}=0$]
10. $\frac{3}{4} \times\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{3}{4} \times \frac{1}{2}-\frac{3}{4} \times \frac{1}{4}$ illustrates that multiplication is distributive over.
(A) addition
(B) subtraction
(C) multiplication
(D) division
[Ans: (B) subtraction]

THink

Page No. 25

1. Observe that, $\frac{1}{1.2}+\frac{1}{2.3}=\frac{2}{3} ; \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=\frac{3}{4} ; \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}=\frac{4}{5}$ Use your reasoning skills, to find the sum of the first 7 numbers in the pattern given above.
Sol. $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{7}{8}$
2. Is the square of a prime number, prime?

Sol. No, the square of a prime number ' P ' has at least 3 divisors $1, \mathrm{P}$ and P^{2}. But a prime number is a number which has only two divisors, 1 and the number itself. So square of a prime number is not prime.
2. Will the sum of two perfect squares always be a perfect square? What about their difference and their product?
Sol. The sum of two perfect squares, need not be always a perfect square. Also the difference of two perfect squares need not be always a perfect square. Bu the product of two perfect square is a perfect square.

Try these

1. Which among $256,576,960,1025,4096$ are perfect square numbers? (Hint: Try to extend the table of squares already seen).
Sol.

$$
\begin{aligned}
256 & =16^{2} \\
576 & =24^{2} \\
4096 & =64^{2}
\end{aligned}
$$

$\therefore 256,576$ and 4096 are perfect squares
2. One can judge just by look, that each of the following numbers (82, 113, 1972, 2057, 8888, 24353) is not a perfect square. Explain why?
Sol. Because the unit digit of a perfect square will be $0,1,4,5,6,9$. But the given numbers have unit digits $2,3,7,8$. So they are not perfect squares.

(7) Think

1. Consider the claim: "Between the squares of the consecutive numbers n and $(n+1)$, there are 2n non-square numbers". Can it be true? How many non-square numbers are there between 2500 and 2601? Verify the claim.
Sol. If $n=50 \Rightarrow n^{2}=50^{2}=2500$
$n+1=51 \Rightarrow(n+1)^{2}=51^{2}=2601$
Non-square numbers of 2500 and $2601=100=2 \times 50=2 n$
So it is true that between the classes of successive numbers $n, n+1$, there are non-square numbers of $2 n$.

(3) Think

Page No. 30

1. In this case, if we want to find the smallest factor with which we can multiply or divide 108 to get a square number, what should we do?

$$
108=2 \times 2 \times 3 \times 3=2^{2} \times 3^{2} \times 3
$$

If we multiply the factors by 2 , then we get

$$
2^{2} \times 3^{2} \times 3 \times 3 \Rightarrow 2^{2} \times 3^{2} \times 3^{2}=(2 \times 3 \times 3)^{2}
$$

Which is perfect square.
\therefore Again if we divide by 3 then we get $2^{2} \times 3^{2} \Rightarrow(2 \times 3)^{2}$, a perfect square.
\therefore We have to multiply or divide 108 by 3 to get a perfect square.

This is Only for Sample For Full Book Order Online or Available at All Leading Bookstores

Sura's -8 th Std - Mathematics

TRY these

Find the square root by long division method.
(1) 400
(2) 1764
(3) 9801

Sol.
(1) 400

$\sqrt{400}=20$
(2) 1764

$\sqrt{1764}=42$
(3) 9801

$\sqrt{9801}=66$

TRY THESE

1. Without calculating the square root, guess the number of digits in the square root of the
following numbers:
(1) 14400
(2) 390625
(3) 100000000

Sol. (1)

$$
\begin{aligned}
\sqrt{14400} & =\sqrt{144 \times 100}=\sqrt{144} \times \sqrt{100} \\
& =12 \times 10=120
\end{aligned}
$$

(2)
$\sqrt{390625}=\sqrt{25 \times 25 \times 25 \times 25}$

$$
=\sqrt{25 \times 25} \times \sqrt{25 \times 25}=25 \times 25=625
$$

(3)

$$
\begin{aligned}
\sqrt{100000000} & =\sqrt{10000 \times 10000} \\
& =\sqrt{10000} \times \sqrt{10000} \\
& =100 \times 100=10,000
\end{aligned}
$$

1. Find the square root of
(1) 5.4756

(2) 19.36

(3) 116.64

Try to fill in the blanks using $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$

$\sqrt{36}=6$	$\sqrt{9} \times \sqrt{4}=3 \times 2=6$	Is $\sqrt{36}=\sqrt{9} \times \sqrt{4} ?$	$\sqrt{81}=9$	$\sqrt{9} \times \sqrt{9}$ $=3 \times 3=9$	Is $\sqrt{81}=\sqrt{9} \times \sqrt{9} ?$
$\sqrt{144}=12$	$\sqrt{9} \times \sqrt{16}$ $=3 \times 4=12$	Is $\sqrt{144}=\sqrt{9} \times \sqrt{16} ?$	$\sqrt{144}=12$	$\sqrt{36} \times \sqrt{4}$ $=6 \times 2=12$	Is $\sqrt{144}$ $=\sqrt{36} \times \sqrt{4}$
$\sqrt{100}=10$	$\sqrt{25} \times \sqrt{4}$ $=5 \times 2=10$	Is $\sqrt{100}$ $=\sqrt{25} \times \sqrt{4} ?$	$\sqrt{1225}$ $=35$	$\sqrt{25} \times \sqrt{49}$ $=5 \times 7=35$	Is $\sqrt{1225}$ $=\sqrt{25} \times \sqrt{49} ?$

(4) TRY THESE

Page No. 34
Using this method, find the square root of the numbers 1.2321 and $\mathbf{1 1 . 9 0 2 5}$.
Sol. (i) $\sqrt{1.2321}=\sqrt{\frac{12321}{10000}}=\frac{111}{100}=1.11$
(ii) $\sqrt{11.9025}=\frac{\sqrt{119025}}{\sqrt{10000}}=\frac{345}{100}=3.45$

TRY these

Write the numbers in ascending order (1) $4, \sqrt{14}, 5 \quad$ (2) $7, \sqrt{65}, 8$
(i) $4, \sqrt{14}, 5$

Squaring all the numbers we get $4^{2},(\sqrt{14})^{2}, 5^{2} \Rightarrow 16,14,25$
\therefore Ascending order: 14, 16, 25
Ascending order : $\sqrt{14}, 4,5$
(ii) $7, \sqrt{65}, 8$

Squaring $7, \sqrt{65}$ and 8 we get $7^{2},(\sqrt{65})^{2}, 8^{2} \Rightarrow 49,65,64$
Ascending order : 49, 64, 65
Ascending order : 7, 8, $\sqrt{65}$

Exercise 1.4

1. Fill in the blanks:
(i) The ones digit in the square of 77 is \qquad .
[Ans: 9]
(ii) The number of non-square numbers between 24^{2} and 25^{2} is \qquad . [Ans: 48]
(iii) The number of perfect square numbers between 300 and 500 is \qquad . [Ans: 5]
(iv) If a number has 5 or 6 digits in it, then its square root will have \qquad digits. [Ans: 3]
(v) The value of $\sqrt{180}$ lies between integers \qquad and \qquad . [Ans: 13, 14]
2. Say True or False:
(i) When a square number ends in 6, its square root will have 6 in the unit's place. [Ans: True]
(ii) A square number will not have odd number of zeros at the end.
[Ans: True]
(iii) The number of zeros in the square of 91000 is 9 .
[Ans: False]
(iv) The square of 75 is 4925 .
(v) The square root of 225 is 15 .
[Ans: False
[Ans: True]

Sura's mer 8th Std - Mathematics

3. Find the square of the following numbers.
(i) 17
(ii) 203
(iii) 1098

Sol.
(i) $\frac{17 \times 17}{119}$ 17 289
(ii) $\frac{203 \times 203}{609}$
000
$\frac{406}{41209}$
(iii) $\frac{1098 \times 1098}{8784}$
9882
10980
1205604
4. Examine if each of the following is a perfect square:
(i) $\mathbf{7 2 5}$ (ii) $\mathbf{1 9 0}$ (iii) $\mathbf{8 4 1}$ (iv) 1089

Sol. (i) 725

$$
725=5 \times 5 \times 29=5^{2} \times 29
$$

Here the second prime factor 29 does not have a pair.
Hence 725 is not a perfect square number.
(ii) 190

$$
190=2 \times 5 \times 19
$$

Here the factors 2, 5 and 9 does not have pairs.
Hence 190 is not a perfect square number.
(iii) 841

$$
841=29 \times 29
$$

Hence 841 is a perfect square
(vi) 1089

$$
\begin{aligned}
1089 & =3 \times 3 \times 11 \times 11 \\
1089 & =3^{2} \times 11^{2} \\
\sqrt{1089} & =3 \times 11=33
\end{aligned}
$$

5	725
5	145
29	29
	1

2	190
5	95
	19

Hence 1089 is a perfect square
5. Find the square root by prime factorisation method.
(i) $\mathbf{1 4 4}$ (ii) $\mathbf{2 5 6}$ (iii) $\mathbf{7 8 4}$ (iv) $\mathbf{1 1 5 6}$ (v) $\mathbf{4 7 6 1}$ (vi) 9025

Sol. (i)

$$
\begin{aligned}
& 144 \\
& 144=2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
& \sqrt{144}=2 \times 2 \times 3=12
\end{aligned}
$$

(ii) 256

$$
\begin{aligned}
& 256=2 \times 2 \\
& \sqrt{256}=2 \times 2 \times 2 \times 2=16
\end{aligned}
$$

2	144
2	72
2	36
2	18
3	9
	3

2	256
2	128
2	64
2	32
2	16
2	8
2	4
	2

(iii) 784

$$
\begin{aligned}
& 784=2 \times 2 \times 2 \times 2 \times 7 \times 7 \\
& \sqrt{784}=2 \times 2 \times 2 \times 2 \times 7 \times 7=28
\end{aligned}
$$

(iv) 1156

$$
\begin{aligned}
1156 & =2 \times 2 \times 17 \times 17 \\
1156 & =2^{2} \times 17^{2} \\
1156 & =(2 \times 17)^{2} \\
\therefore \sqrt{1156} & =\sqrt{(2 \times 17)^{2}}=2 \times 17=34 \\
\therefore \sqrt{1156} & =34
\end{aligned}
$$

2	784
2	392
2	196
2	98
7	49
	7

2	1156
2	578
17	289
17	17
	1

(v) 4761

$$
\begin{aligned}
4761 & =3 \times 3 \times 23 \times 23 \\
4761 & =3^{2} \times 23^{2} \\
4761 & =(3 \times 23)^{2} \\
\sqrt{4761} & =\sqrt{(3 \times 23)^{2}} \\
\sqrt{4761} & =3 \times 23 \\
\sqrt{4761} & =69
\end{aligned}
$$

(vi) 9025

$$
\begin{aligned}
9025 & =5 \times 5 \times 19 \times 19 \\
9025 & =5^{2} \times 19^{2} \\
9025 & =(5 \times 19)^{2} \\
\sqrt{925} & =\sqrt{(5 \times 19)^{2}}=5 \times 19=95
\end{aligned}
$$

3	4761
3	1587
23	529
23	23
	1

5	9025
5	1805
19	361
19	19
	1

6. Find the square root by long division method.
(i) 1764
(ii) 6889
(iii) 11025
(iv) 17956
(v) 418609

Sol.
(i) 1764
(ii) 6889

	42
4	$\overline{17} \overline{64}$
	$16 \downarrow$
82	164
	164
	0

$\sqrt{1764}=42$

$$
\sqrt{6889}=83
$$

(iii) 11025

$\sqrt{11025}=105$

