

surás MATHEMATICS $10^{\text {th }}$ Standard

Based on the latest Syllabus and New Textbook

Salient Features

+ Prepared as per the New Textbook.
+ Complete Solutions to Textbook Exercises.
+ Exhaustive Additional Question in all Chapters.
+ Chapter-wise Unit Tests with Answers.
+ Model Question Papers 1 to 6 (PTA) : Questions are incorporated in the appropriate sections.
+ Govt. Model Question Paper-2019 [Govt. MQP-2019],Quarterly Exam - 2019 [QY-2019] Half yearly Exam - 2019 [HY-2019], Supplementary Exam - 2020 [Sep.-2020] are incorporated at appropriate sections.
+ September 2020 Govt. Supplementary Exam Question Paper (with answers) is given.

SURA PUBLICATIONS

Chennai

2021-22 Edition
 © Reserved with Publishers

All rights reserved © SURA Publications.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digitally, electronically, mechanically, photocopying, recorded or otherwise, without the written permission of the publishers. Strict action will be taken.

ISBN : 978-81-8449-517-1
Code No. : SG 48

Author :
Mrs. S.Thamarai, M.Sc., M.A., M.Ed., M.Phil
Edited by
Mr. S. Sathish M.Sc., M.Phil
Reviewed by
Mr. S.Niranjan, B.Tech, (NITT)PGDM (IIM)
Chennai

Head Office:
 1620, 'J' Block, 16th Main Road, Anna Nagar, Chennai - 600040.
 Phones: 044-4862 9977, 044-486 27755.
 Mob : 81242 01000/ 8124301000
 e-mail : orders @surabooks.com
 website : www.surabooks.com

Also available for Std. - X

Guides :
\% Sura's Tamil
\% Sura's Smart English
\% Sura's Mathematics (EM/TM)
\% Sura's Science (EM/TM)
※ Sura's Social Science (EM/TM)

For More Information - Contact

Queries
For Order : orders@surabooks.com
Contact : 80562 94222 / 8056215222
Whatsapp : 8124201000 / 9840926027
Online Site : www.surabooks.com
For Free Study Materials Visit http://tnkalvi.in

PREFACE

The woods are lovely, dark and deep. But I have promises to keep, and miles to go before I sleep

- Robert Frost

Respected Principals, Correspondents, Head Masters / Head Mistresses, Teachers, and dear Students.

From the bottom of our heart, we at SURA Publications sincerely thank you for the support and patronage that you have extended to us for more than a decade.

It is in our sincerest effort we take the pride of releasing SURA'S Mathematics for $10^{\text {th }}$ Standard - Edition 2021-22. This guide has been authored and edited by qualified teachers having teaching experience for over a decade in their respective subject fields. This Guide has been reviewed by reputed Professors who are currently serving as Head of the Department in esteemed Universities and Colleges.

With due respect to Teachers, I would like to mention that this guide will serve as a teaching companion to qualified teachers. Also, this guide will be an excellent learning companion to students with exhaustive exercises, additional problems and 1 marks as per new model in addition to precise answers for exercise problems.

In complete cognizance of the dedicated role of Teachers, I completely believe that our students will learn the subject effectively with this guide and prove their excellence in Board Examinations.

I once again sincerely thank the Teachers, Parents and Students for supporting and valuing our efforts.

CONTENTS

Chapters	Chapter Name	Page No.
1	Relations and Functions	$1-24$
2	Numbers and Sequences	$25-60$
3	Algebra	$61-130$
4	Geometry	$131-166$
5	Coordinate Geometry	$167-194$
6	Trigonometry	$195-218$
7	Mensuration	$219-240$
8	Statistics and Probability	$241-268$

TO ORDER WITH US

SCHOOLS and TEACHERS

We are grateful for your support and patronage to 'SURA PUBLICATIONS' Kindly prepare your order in your School letterhead and send it to us. For Orders contact: 8056294222 / 8056215222

DIRECT DEPOSIT

A/c Name $\quad:$ Sura Publications	
Our A/c No.	$: 36550290536$
Bank Name	$:$ STATE BANK OF INDIA
Bank Branch	: PADI
IFSC	: SBIN0005083

A/c Name	: Sura Publications	
Our A/c No.	$:$	21000210001240
Bank Name	:	UCO BANK
Bank Branch	: Anna Nagar West	
IFSC	: UCBA0002100	

A/c Name : Sura Publications
Our A/c No. : 6502699356
Bank Name : INDIAN BANK
Bank Branch : ASIAD COLONY
IFSC
: IDIB000A098

A/c Name	$:$	Sura Publications
Our A/c No.	$:$	$\mathbf{1 1 5 4 1 3 5 0 0 0 0 1 7 6 8 4}$
Bank Name	$:$	KVB BANK
Bank Branch	$:$	Anna Nagar
IFSC	:	KVBL0001154

After Deposit, please send challan and order to our address.
email : orders@surabooks.com / Whatsapp : 8124201000.

DEMAND DRAFT / CHEQUE

Please send Demand Draft / cheque in favour of 'SURA PUBLICATIONS' payable at Chennai.
The Demand Draft / cheque should be sent with your order in School letterhead.

STUDENTS

Order via Money Order (M/O) to

SURA PUBLICATIONS

1620, 'J' Block, $16^{\text {th }}$ Main Road, Anna Nagar, Chennai - 600040.
Phones: 044-4862 9977, 044-486 27755
Mobile : 8056294222 / 8056215222
E-mail : orders@surabooks.com Website : www.surabooks.com

For Full Book Order Online and Available at All Leading Bookstores

RELATIONS AND FUNCTIONS

FORMULAE TO REMEMBER

- Vertical line test :

A curve drawn in a graph represents a functions, if every vertical line intersects the curve in at most one point.

- Horizontal line test :

A function represented in a graph is one - one, if every horizontal line intersect the curve in at most one point.

- Linear functions has applications in Cryptography as well as in several branches of Science and Technology.

EXERCISE 1.1

1. Find $A \times B, A \times A$ and $B \times A$
(i) $A=\{2,-2,3\}$ and $B=\{1,-4\}$ (ii) $A=B=\{p, q\}$
(iii) $\mathbf{A}=\{\boldsymbol{m}, \boldsymbol{n}\} ; \mathrm{B}=\phi \quad[\mathrm{PTA}-1]$

Sol.
(i) $\mathrm{A}=\{2,-2,3\}, \mathrm{B}=\{1,-4\}$

$$
\mathrm{A} \times \mathrm{B}=\{(2,1),(2,-4),(-2,1),(-2,-4)
$$

$(3,1),(3,-4)\}$
$\mathrm{A} \times \mathrm{A}=\{(2,2),(2,-2),(2,3),(-2,2)$,
$(-2,-2),(-2,3),(3,2),(3,-2)$,
$(3,3)\}$
$\mathrm{B} \times \mathrm{A}=\{(1,2),(1,-2),(1,3),(-4,2)$, $(-4,-2),(-4,3)\}$
(ii) $\mathrm{A}=\mathrm{B}=\{(p, q)$
$\mathrm{A} \times \mathrm{B}=\{(p, p),(p, q),(q, p),(q, q)\}$
$\mathrm{A} \times \mathrm{A}=\{(p, p),(p, q),(q, p),(q, q)\}$
$\mathrm{B} \times \mathrm{A}=\{(p, p),(p, q),(q, p),(q, q)\}$
(iii) $\quad \mathrm{A}=\{m, n\}, \mathrm{B}=\phi$
$\mathrm{A} \times \mathrm{B}=\{ \}$
$\mathrm{A} \times \mathrm{A}=\{(m, m),(m, n),(n, m),(n, n)\}$
$B \times A=\{ \}$
2. Let $A=\{1,2,3\}$ and $B=\{x \mid x$ is a prime number less than 10$\}$. Find $A \times B$ and $B \times A$.
Sol.

$$
\begin{aligned}
\mathrm{A}= & \{1,2,3\}, \mathrm{B}=\{2,3,5,7\} \\
\mathrm{A} \times \mathrm{B}= & \{(1,2),(1,3),(1,5),(1,7),(2,2), \\
& (2,3),(2,5),(2,7),(3,2),(3,3), \\
& (3,5),(3,7)\} \\
\mathrm{B} \times \mathrm{A}= & \{(2,1),(2,2),(2,3),(3,1),(3,2), \\
& (3,3),(5,1),(5,2),(5,3),(7,1), \\
& (7,2),(7,3)\}
\end{aligned}
$$

3. If $\mathrm{B} \times \mathrm{A}=\{(-2,3),(-2,4),(0,3),(0,4),(3,3)$, $(3,4)\}$ find A and B.
[Qy - 2019]
Sol. Given $\mathrm{B} \times \mathrm{A}=\{(-2,3),(-2,4),(0,3),(0,4),(3,3)$,

Here $B=\{-2,0,3\}$
[All the first elements of the order pair] and $A=\{3,4\}$
[All the second elements of the order pair]
4. If $A=\{5,6\}, B=\{4,5,6\}, C=\{5,6,7\}$, Show that $A \times A=(B \times B) \cap(C \times C)$.
Sol.

$$
\begin{align*}
\mathrm{A}= & \{5,6\}, \mathrm{B}=\{4,5,6\}, \mathrm{C}=\{5,6,7\} \\
\mathrm{A} \times \mathrm{A}= & \{(5,5),(5,6),(6,5),(6,6)\} \ldots(1) \\
\mathrm{B} \times \mathrm{B}= & \{(4,4),(4,5),(4,6),(5,4) \\
& (\underline{5,5}),(\underline{5,6}),(6,4),(\underline{6,5}),(\underline{6,6})\} \tag{2}
\end{align*}
$$

$$
C \times C=\{(\underline{5,5}),(\underline{5,6}),(5,7),(\underline{6,5}),(\underline{6,6})
$$

$$
(6,7),(7,5),(7,6),(7,7)\} \ldots(3)
$$

$(\mathrm{B} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{C})=\{(5,5),(5,6),(6,5),(6,6)\}$
$(1)=(4)$
$\mathrm{A} \times \mathrm{A}=(\mathrm{B} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{C}) . \quad$ It is proved.
5. Given $\mathbf{A}=\{1,2,3\}, B=\{2,3,5\}, C=\{3,4\}$ and $\mathrm{D}=\{1,3,5\}$, check if $(\mathrm{A} \cap \mathrm{C}) \times(\mathrm{B} \cap \mathrm{D})=$ $(A \times B) \cap(C \times D)$ is true?
[Qy - 2019]
$\mathrm{LHS}=\{(\mathrm{A} \cap \mathrm{C}) \times(\mathrm{B} \cap \mathrm{D})$
$A \cap C=\{3\}$
$\mathrm{B} \cap \mathrm{D}=\{3,5\}$
$(A \cap C) \times(B \cap D)=\{(3,3),(3,5)\}$
RHS $=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})$
$\mathrm{A} \times \mathrm{B}=\{(1,2),(1,3),(1,5),(2,2),(2,3)$,
$(2,5),(3,2),(\underline{3,3}),(\underline{3,5})\}$
$\mathrm{C} \times \mathrm{D}=\{(3,1),(\underline{3,3}),(\underline{3,5}),(4,1),(4,3),(4,5)\}$
$(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})=\{(3,3),(3,5)\}$
$\therefore(1)=(2) \therefore$ It is true.
6. Let $A=\{x \in \mathbb{W} \mid x<2\}, B=\{x \in \mathbb{N} \mid 1<x \leq 4\}$ and $C=\{3,5\}$. Verify that
(i) $\mathbf{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C}) \quad[$ [PTA - 2]
(ii) $A \times(B \cap C)=(A \times B) \cap(A \times C) \quad[P T A-5]$
(iii) $(A \cup B) \times C=(A \times C) \cup(B \times C)$
(i)

$$
A=\{x \in \mathbb{W} \mid x<2\}=\{0,1\}
$$

[Whole numbers less than 2]

$$
\mathrm{B}=\{x \in \mathbb{N} \mid 1<x \leq 4\}=\{2,3,4\}
$$

$$
C=\{3,5\}
$$

[Natural numbers from 2 to 4]

$$
\mathrm{LHS}=\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})
$$

$$
\mathrm{B} \cup \mathrm{C}=\{2,3,4\} \cup\{3,5\}
$$

$$
=\{2,3,4,5\}
$$

$A \times(B \cup C)=\{(0,2),(0,3),(0,4),(0,5)$,
$(1,2),(1,3),(1,4),(1,5)\}$

$$
\begin{align*}
\mathrm{RHS}= & (\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C}) \tag{1}\\
(\mathrm{A} \times \mathrm{B})= & \{(0,2),(0,3),(0,4),(1,2), \\
& (1,3),(1,4)\} \\
(\mathrm{A} \times \mathrm{C})= & \{(0,3),(0,5),(1,3),(1,5)\} \\
(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})= & \{(0,2),(0,3),(0,4),(0,5), \\
& (1,2),(1,3),(1,4),(1,5)\} \tag{2}
\end{align*}
$$

$(1)=(2)$, LHS $=$ RHS Hence it is proved.
(ii) $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$ LHS $=A \times(B \cap C)$
$(\mathrm{B} \cap \mathrm{C})=\{3\}$
$\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=\{(0,3),(1,3)\}$
$\mathrm{RHS}=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
$(A \times B)=\{(0,2),(\underline{0}, 3),(0,4),(1,2)$,
$(1,3),(1,4)\}$

$$
\begin{equation*}
(\mathrm{A} \times \mathrm{C})=\{(\underline{0,3}),(0,5),(\underline{1,3}),(1,5)\} \tag{2}
\end{equation*}
$$

$(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})=\{(0,3),(1,3)\}$
$(1)=(2) \Rightarrow$ LHS $=$ RHS.
Hence it is verified.
(iii) $(A \cup B) \times C=(A \times C) \cup(B \times C)$

$$
\begin{aligned}
\mathrm{LHS}= & (\mathrm{A} \cup \mathrm{~B}) \times \mathrm{C} \\
\mathrm{~A} \cup \mathrm{~B}= & \{0,1,2,3,4\} \\
(\mathrm{A} \cup \mathrm{~B}) \times \mathrm{C}= & \{(0,3),(0,5),(1,3),(1,5) \\
& (2,3),(2,5),(3,3),(3,5)
\end{aligned}
$$

$(4,3),(4,5)\} \quad . .(1)$
RHS $=(\mathrm{A} \times \mathrm{C}) \cup(\mathrm{B} \times \mathrm{C})$
$(\mathrm{A} \times \mathrm{C})=\{(0,3),(0,5),(1,3),(1,5)\}$
$(B \times C)=\{(2,3),(2,5),(3,3),(3,5)$, $(4,3),(4,5)\}$
$(\mathrm{A} \times \mathrm{C}) \cup(\mathrm{B} \times \mathrm{C})=\{(0,3),(0,5),(1,3),(1,5)$, $(2,3),(2,5),(3,3),(3,5)$, $(4,3),(4,5)\}$.
$(1)=(2)$
\therefore LHS $=$ RHS. Hence it is verified.
7. Let $\mathbf{A}=$ The set of all natural numbers less than $8, B=$ The set of all prime numbers less than $8, C=$ The set of even prime number. Verify that
(i) $\quad(A \cap B) \times C=(A \times C) \cap(B \times C)[$ Sep. - 2020]
(ii) $\quad \mathbf{A} \times(\mathbf{B}-\mathbf{C})=(\mathbf{A} \times \mathbf{B})-(\mathbf{A} \times \mathbf{C})$ [PTA - 1]

$$
\begin{aligned}
& \mathrm{A}=\{1,2,3,4,5,6,7\} \\
& \mathrm{B}=\{2,3,5,7\} \\
& \mathrm{C}=\{2\}
\end{aligned}
$$

[$\because 2$ is the only even prime number]
Sol. (i) $(A \cap B) \times C=(A \times C) \cap(B \times C)$
$\mathrm{LHS}=(\mathrm{A} \cap \mathrm{B}) \times \mathrm{C}$
$\mathrm{A} \cap \mathrm{B}=\{2,3,5,7\}$
$(\mathrm{A} \cap \mathrm{B}) \times \mathrm{C}=\{(2,2),(3,2),(5,2),(7,2)\}$

$$
\begin{equation*}
\mathrm{RHS}=(\mathrm{A} \times \mathrm{C}) \cap(\mathrm{B} \times \mathrm{C}) \tag{1}
\end{equation*}
$$

$(\mathrm{A} \times \mathrm{C})=\{(1,2),(\underline{2,2}),(\underline{3,2}),(4,2),(\underline{5,2})$, $(6,2),(7,2)\}$
$(\mathrm{B} \times \mathrm{C})=\{(\underline{2,2}),(\underline{3,2}),(5,2),(\underline{7,2})\}$
$(\mathrm{A} \times \mathrm{C}) \cap(\mathrm{B} \times \mathrm{C})=\{(2,2),(3,2),(5,2),(7,2)\}$
$(1)=(2)$
\therefore LHS $=$ RHS. Hence it is verified.

$$
\text { (ii) } \begin{align*}
& \mathbf{A} \times(\mathbf{B}-\mathbf{C})=(\mathbf{A} \times \mathbf{B})-(\mathbf{A} \times \mathbf{C}) \\
& \mathrm{LHS}= \mathrm{A} \times(\mathrm{B}-\mathrm{C}) \\
&(\mathrm{B}-\mathrm{C})=\{3,5,7\} \\
& \mathrm{A} \times(\mathrm{B}-\mathrm{C})=\{(1,3),(1,5),(1,7),(2,3),(2,5), \\
&(2,7),(3,3),(3,5),(3,7),(4,3), \\
&(4,5),(4,7),(5,3),(5,5),(5,7), \\
&(6,3),(6,5),(6,7),(7,3),(7,5), \\
&(7,7)\} \ldots(1) \\
& \mathrm{RHS}=(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C}) \\
&(\mathrm{A} \times \mathrm{B})=\{(1,2),(1,3),(1,5),(1,7), \\
&(2,2),(2,3),(2,5),(2,7), \\
&(3,2),(3,3),(3,5),(3,7), \\
&(4,2),(4,3),(4,5),(4,7), \\
&(5,2),(5,3),(5,5),(5,7), \\
&(6,2),(6,3),(6,5),(6,7), \\
&(7,2),(7,3),(7,5),(7,7)\} \\
&(\mathrm{A} \times \mathrm{C})=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\} \\
&(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})=(1,3),(1,5),(1,7),(2,3),(2,5), \\
&(2,7),(3,3),(3,5),(3,7),(4,3), \\
&(4,5),(4,7),(5,3),(5,5),(5,7), \\
&(6,3),(6,5),(6,7),(7,3),(7,5), \tag{7,7}
\end{align*}
$$

$(1)=(2) \Rightarrow$ LHS $=$ RHS. Hence it is verified.

EXERCISE 1.2

1. Let $A=\{1,2,3,7\}$ and $B=\{3,0,-1,7\}$, which of the following are relation from A to B ?
(i) $\mathbb{R}_{1}=\{(\mathbf{2}, 1),(\mathbf{7}, 1)\}$
(ii) $\quad \mathbb{R}_{2}=\{(-\mathbf{1}, \mathbf{1})\}$
(iii) $\mathbb{R}_{3}=\{(2,-1),(7,7),(1,3)\}$
(iv) $\mathbb{R}_{4}=\{(7,-1),(0,3),(3,3),(0,7)\}$

Sol. Given $\mathrm{A}=\{1,2,3,7\}$ and $\mathrm{B}=\{3,0,-1,7\}$
(i) $\mathrm{R}_{1}=\{(2,1),(7,1)\}$ 2 and 7 cannot be related to
1 since $1 \notin \mathrm{~B}$
$\therefore \mathrm{R}_{1}$ is not a relation.
(ii) $\mathrm{R}_{2}=\{(-1,1)\}$

-1 cannot be related to 1
since $-1 \notin \mathrm{~A}$ and $1 \notin \mathrm{~B}$
$\therefore \mathrm{R}_{2}$ is not a relation.
(iii) $\mathrm{R}_{3}=\{(2,-1),(7,7),(1,3)\}$

R_{3} is a relation since 2 is related to $-1,7$ is related to 7 and 1 is related to 3 .
(iv) $\mathrm{R}_{4}=\{(7,-1),(0,3),(3,3),(0,7)\}$

7 is related to -1 3 is related to 3
Since $0 \notin \mathrm{~A}, 0$ cannot be related to 3 and 7 . $\therefore \mathrm{R}_{4}$ is not a relation.
2. Let $A=\{1,2,3,4, \ldots, 45\}$ and R be the relation defined as "is square of" on A. Write \mathbb{R} as a subset of $\mathbf{A} \times \mathbf{A}$. Also, find the domain and range of \mathbb{R}.
Sol. Given $A=\{1,2,3,4, \ldots 45\}$
$\therefore \mathrm{A} \times \mathrm{A}=\{(1,1)(1,2)(1,3) \ldots(1,45)$

$$
\begin{gather*}
(2,1)(2,2) \ldots(2,45)(45,1)(45,2) \\
(45,3) \ldots(45,45)\} \quad \ldots(1) \tag{1}
\end{gather*}
$$

R is defined as "is square of"
$\therefore \mathrm{R}=\{(1,1)(2,4)(3,9)(4,16)(5,25)(6,36)\}$
$[\because 1$ is the square of 1,2 is the square of 4 and so on]
From (1) and (2), R is the subset of $A \times A$
$\therefore \mathrm{R} \subset \mathrm{A} \times \mathrm{A}$
Domain of $\mathrm{R}=\{1,2,3,4,5,6\}$
[All the first elements of the order pair in (2)]
Range of $R=\{1,4,9,16,25,36\}$
[All the second elements of the order pair in (2)]
3. A Relation \mathbb{R} is given by the set $\{(x, y) / y=x+3$, $x \in\{0,1,2,3,4,5\}\}$. Determine its domain and range.
[PTA - 5]
Sol. Given $\mathbb{R}=\{(x, y) / y=x+3\}$ and $x \in\{0,1,2,3,4,5\}$
When $x=0, \quad y=0+3=3 \quad[\because y=x+3]$
When $x=1, \quad y=1+3=4$
When $x=2, \quad y=2+3=5$
When $x=3, \quad y=3+3=6$
When $x=4, \quad y=4+3=7$
When $x=5, \quad y=5+3=8$
$\therefore \mathbb{R}=\{(0,3),(1,4),(2,5),(3,6),(4,7),(5,8)\}$
\therefore Domain of $\mathbb{R}=\{0,1,2,3,4,5\}$
[All the first element in \mathbb{R}]
Range of $\mathbb{R}=\{3,4,5,6,7,8\}$
[All the second element in \mathbb{R}]
4. Represent each of the given relation by (a) an arrow diagram, (b) a graph and (c) a set in roster form, wherever possible.
(i) $\{(x, y) \mid x=2 y, x \in\{2,3,4,5\}, y \in\{1,2,3,4\}\}$
(ii) $\{(x, y) \mid y=x+3, x, y$ are natural numbers $<10\}$

Soll
(i) $\mathrm{R}=\{(x, y) \mid x=2 y, x \in\{2,3,4,5\}$ and $y \in\{1,2,3,4\}\}$

When $x=2, \quad y=\frac{x}{2}=\frac{2}{2}=1$

$$
\left[\because x=2 y \Rightarrow y=\frac{x}{2}\right]
$$

When $x=3, \quad y=\frac{3}{2}$
When $x=4, \quad y=\frac{4}{2}=2$
When $x=5, \quad y=\frac{5}{2}$
(a) an arrow diagram

3 cannot be related to $\frac{3}{2}$ and 5 cannot be related to $\frac{5}{2}$.
(b) a graph

(c) Roster form : $\mathrm{R}=\{(2,1),(4,2)\}$
(ii) $\mathrm{R}=\{(x, y) \mid y=x+3$,
x and y are natural numbers $<10\}$
$x=\{1,2,3,4,5,6,7,8,9$
$y=\{1,2,3,4,5,6,7,8,9\}$
[$\because x$ and y are natural numbers less than 10]
Given $y=x+3$
When $x=1, \quad y=1+3=4$
When $x=2, \quad y=2+3=5$
When $x=3, \quad y=3+3=6$
When $x=4, \quad y=4+3=7$
When $x=5, \quad y=5+3=8$
When $x=6, \quad y=6+3=9$
$\left\{\begin{array}{ll}\text { When } x=7, & y=7+3=10 \\ \text { When } x=8, & y=8+3=11 \\ \text { When } x=9, & y=9+3=12\end{array}\right\}[10,11,12 \notin y]$
$\mathrm{R}=\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$
(a) an arrow diagram

(b) a graph

(c) Roster form :

$$
\mathrm{R}=\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}
$$

5. A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M) and an Executive Officer (E). The company provide $₹ 10,000$, ₹ 25,000 , ₹ 50,000 and $₹ 1,00,000$ as salaries to the people who work in the categories A, C, M and E respectively. If $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} were Assistants; $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ were Clerks; $\mathbf{M}_{1}, \mathrm{M}_{2}$, M_{3} were managers and E_{1}, E_{2} were Executive officers and if the relation \mathbb{R} is defined by $x \mathbb{R} y$, where x is the salary given to person y, express the relation \mathbb{R} through an ordered pair and an arrow diagram.

$$
\begin{aligned}
\mathrm{A}-\text { Assistants } & \rightarrow \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5} \\
\mathrm{C}-\text { Clerks } & \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4} \\
\mathrm{M}-\text { Managers } & \rightarrow \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3} \\
\mathrm{E}-\text { Executive officer } & \rightarrow \mathrm{E}_{1}, \mathrm{E}_{2}
\end{aligned}
$$

$x \mathrm{R} y$ is defined as x is the salary for assistants is $₹ 10,000$, clerks is $₹ 25,000$, Manger is $₹ 50,000$ and for the executing officer ₹ $1,00,000$.
(a)

$$
\left(10,000, \mathrm{~A}_{4}\right),\left(10,000, \mathrm{~A}_{5}\right)
$$

$$
\left(25,000, \mathrm{C}_{1}\right),\left(25,000, \mathrm{C}_{2}\right),\left(25,000, \mathrm{C}_{3}\right)
$$

$\left(25,000, \mathrm{C}_{4}\right)$

$$
\left(50,000, \mathrm{M}_{1}\right),\left(50,000, \mathrm{M}_{2}\right),\left(50,000, \mathrm{M}_{3}\right)
$$

$$
\left.\left(1,00,000, \mathrm{E}_{1}\right),\left(1,00,000, \mathrm{E}_{2}\right)\right\}
$$

EXERCISE 1.3

1. Let $f=\{(x, y) \mid x, y \in \mathbb{N}$ and $y=2 x\}$ be a relation on \mathbb{N}. Find the domain, co-domain and range.
Is this relation a function?
Sol. Given $f=\{(x, y) \mid x, y \in \mathbb{N}$ and $y=2 x\}$
When $x=1, \quad y=2(1)=2$
When $x=2, \quad y=2(2)=4$
When $x=3, \quad y=2(3)=6$
When $x=4, \quad y=2(4)=8$ and so on.

$$
\mathrm{R}=\{(1,2),(2,4),(3,6),(4,8),(5,10), \ldots\}
$$

Domain of $\mathrm{R}=\{1,2,3,4, \ldots\}$,
Range of $\mathrm{R}=\{2,4,6,8, \ldots\}$

Since all the elements of domain are related to some elements of co-domain, this relation f is a function.
2. Let $X=\{3,4,6,8\}$. Determine whether the relation $\mathbb{R}=\left\{(x, f(x)) \mid x \in X, f(x)=x^{2}+1\right\}$ is a function from X to \mathbb{N} ?

$$
\begin{aligned}
x & =\{3,4,6,8\} \\
\mathrm{R} & =\left((x, f(x)) \mid x \in \mathrm{X}, f(x)=x^{2}+1\right\}
\end{aligned}
$$

$f(x)=x^{2}+1$
$f(3)=3^{2}+1=10$
$f(4)=4^{2}+1=17$
$f(6)=6^{2}+1=37$
$f(8)=8^{2}+1=65$
$\mathrm{R}=\{(3,10),(4,17),(6,37),(8,65)\}$
Yes, R is a function from X to \mathbb{N}.
Since all the elements of X are related to some elements of \mathbb{N}.
3. Given the function $f: x \rightarrow x^{2}-5 x+6$, evaluate
(i) $f(-1)$
(ii) $f(2 a)$
(iii) $f(2)$
(iv) $f(x-1)$

Give the function $f: x \rightarrow x^{2}-5 x+6$.

$$
\begin{equation*}
f(-1)=(-1)^{2}-5(-1)+6=1+5+6=12 \tag{i}
\end{equation*}
$$

(ii)

$$
f(2 a)=(2 a)^{2}-5(2 a)+6=4 a^{2}-10 a+6
$$

(iii)

$$
f(2)=2^{2}-5(2)+6=4-10+6=0
$$

$$
\begin{align*}
f(x-1) & =(x-1)^{2}-5(x-1)+6 \tag{iv}\\
& =x^{2}-2 x+1-5 x+5+6 \\
& =x^{2}-7 x+12
\end{align*}
$$

4. A graph representing the function $f(x)$ is given in figure it is clear that $f(9)=\mathbf{2}$.

(i) Find the following values of the function
(a) $f(0)$
(b) $f(7)$
(c) $f(2)$
(d) $f(10)$
(ii) For what value of x is $f(x)=1$?
(iii) Describe the following (i) Domain (ii) Range.
(iv) What is the image of 6 under f ?

Soll
(i) From the graph
(a) $f(0)=9$
(c) $f(2)=6$
(b) $f(7)=6$
(d) $f(10)=0$
(ii) At $x=9.5, f(x)=1$
(iii) Domain $=\{0,1,2,3,4,5,6,7,8,9,10\}$

$$
\begin{aligned}
& =\{x \mid 0 \leq x \leq 10, x \in \mathbb{R}\} \\
\text { Range } & =\{x \mid 0 \leq x \leq 9, x \in \mathbb{R}\} \\
& =\{0,1,2,3,4,5,6,7,8,9\}
\end{aligned}
$$

(iv) The image of 6 under f is 5 . Since when you draw a line at $x=6$, it meets the graph at 5 .
5. Let $f(x)=2 x+5$. If $x \neq 0$ then find $\frac{f(x+2)-f(2)}{x}$.

Sol. Given $f(x)=2 x+5, x \neq 0 \cdot \frac{f(x+2)-f(2)}{x}$

$$
\begin{aligned}
f(x) & =2 x+5 \\
\Rightarrow \quad f(x+2) & =2(x+2)+5 \\
& =2 x+4+5=2 x+9 \\
\Rightarrow \quad f(2) & =2(2)+5=4+5=9 \\
\therefore \frac{f(x+2)-f(2)}{x} & =\frac{2 x+9-9}{x}=\frac{2 x}{x}=2
\end{aligned}
$$

6. A function f is defined by $f(x)=2 x-3$
(i) find $\frac{f(0)+f(1)}{2}$
(ii) find x such that $f(x)=0$.
(iii) find x such that $f(x)=x$.
(iv) find x such that $f(x)=f(1-x)$.

Soll Given $f(x)=2 x-3$
(i) $\frac{f(0)+f(1)}{2}$

$$
\begin{aligned}
f(0) & =2(0)-3=-3 \\
f(1) & =2(1)-3=-1 \\
\therefore \frac{f(0)+f(1)}{2} & =\frac{-3-1}{2}=\frac{-4}{2}=-2
\end{aligned}
$$

(ii) $\quad f(x)=0 \Rightarrow 2 x-3=0$

$$
2 x=3
$$

$$
x=\frac{3}{2}
$$

(iii)

$$
f(x)=x \Rightarrow 2 x-3=x \Rightarrow 2 x-x=3
$$

$$
x=3
$$

(iv)

$$
\begin{aligned}
f(x) & =f(1-x) \\
2 x-3 & =2(1-x)-3 \\
2 x-3 & =2-2 x-3 \\
2 x+2 x & =2-\not y+\nmid z \\
4 x & =2 \\
x & =\frac{\not 2}{\not 2} \\
x & =\frac{1}{2}
\end{aligned}
$$

7. An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal squares from the corners and turning up the sides as shown in figure. Express the volume V of the box as a function of x.

Sol. Volume of the box $=$ Volume of the cuboid

$$
=l \times b \times h \text { cu. units }
$$

Here $l=24-2 x$
$b=24-2 x$
$h=x$

$$
\therefore \mathrm{V}=(24-2 x)(24-2 x) \times x
$$

$$
=\left(576-48 x-48 x+4 x^{2}\right) x
$$

$$
\mathrm{V}=4 x^{3}-96 x^{2}+576 x
$$

8. A function f is defined by $f(x)=3-2 x$. Find x such that $f\left(x^{2}\right)=(f(x))^{2}$.
Sol.

$$
\text { Given } f(x)=3-2 x
$$

Also, it is given that $f\left(x^{2}\right)=[f(x)]^{2}$

$$
\begin{array}{r}
f\left(x^{2}\right)=3-2 x^{2}\left[\text { Replacing } x \text { by } x^{2}\right] \\
\ldots(1)]^{2}=(3-2 x)^{2}=9-12 x+4 x^{2} \\
\ldots(2) \tag{2}\\
{\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right]}
\end{array}
$$

From (1) and (2),
$\Rightarrow \quad 9-12 x+4 x^{2}=3-2 x^{2}$
$\Rightarrow 9-12 x+4 x^{2}-3-2 x^{2}=0$
$\Rightarrow \quad 6 x^{2}-12 x+6=0$

Dividing by 6 , we get $x^{2}-2 x+1=0$
On factorizing we get, $(x-1)(x-1)=0$
\Rightarrow
$x=1$
9. A plane is flying at a speed of 500 km per hour. Express the distance d travelled by the plane as function of time \boldsymbol{t} in hours.

Soll

$$
\text { Speed }=\frac{\text { distance covered }}{\text { time taken }}
$$

$\Rightarrow \quad$ distance $=$ Speed \times time
$\Rightarrow \quad d=500 \times t[\because$ time $=t$ hrs $]$
$\Rightarrow \quad d=500 t$
10. The data in the adjacent table depicts the length of a person forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as $y=a x+b$, where a, b are constants. [PTA - 4]

Length ' x ' of forehand (in cm)	Height ' y ' (in inches)
35	56
45	65
50	69.5
55	74

(i) Check if this relation is a function.
(ii) Find a and b.
(iii) Find the height of a person whose forehand length is 40 cm .
(iv) Find the length of forehand of a person if the height is $\mathbf{5 3 . 3}$ inches.

Sol. Given relation is $y=a x+b$
(i) The given ordered pairs are

$$
\mathrm{R}=\{(35,56)(45,65)(50,69.5)(55,74)\}
$$

Since all the elements of x are related to some elements of y, the given relation is a function.
(ii) Consider any two ordered pairs $(35,56)$ and $(45,65)$
Substitute $\begin{array}{cc}x & y \\ (35,56)\end{array}$ in $y=a x+b$ we get,

$$
\begin{equation*}
56=a(35)+b \tag{1}
\end{equation*}
$$

Similarly substitute $(45,65)$ in $y=a x+b$, we get

$$
\begin{align*}
& 65=a(45)+b \tag{2}\\
& \text { (2) } \rightarrow \quad \underline{65}=\underbrace{45 a}_{-} \pm b \tag{2}\\
& \begin{array}{lll}
(2) \rightarrow & 65 & =-45 a+b \\
(1) \rightarrow & 56 & =-35 a+b
\end{array} \tag{3}\\
& (1) \rightarrow \quad 56=35 a+b
\end{align*}
$$

Substituting, $9=10 a$

$$
\Rightarrow \quad a=\frac{9}{10}=0.9
$$

Substituting $a=0.9$ in (1) we get

$$
\begin{aligned}
& 56=35(0.9)+b \\
& \Rightarrow \quad 56=31.5+b \\
& \Rightarrow \quad b=56-31.5=24.5 \\
& \text { Since } y=a x+b \\
& \text { We get } y=0.9 x+24.5
\end{aligned}
$$

(iii) When the length of the forehand $x=40 \mathrm{~cm}$,

$$
\begin{aligned}
& y \\
\Rightarrow \quad & y \\
\Rightarrow & y .9(40)+24.5 \\
& y 6+24.5=60.5 \text { inches }
\end{aligned}
$$

\therefore The required height of the person is 60.5 inches.
(iv) When the length of the forehand $y=53.3$ inches,

$$
\begin{aligned}
& 53.3=0.9 x+24.5 \\
& \Rightarrow 53.3-24.5=0.9 x \quad[\because y=0.9 x+24.5] \\
& \Rightarrow \quad \Rightarrow 28.8=0.9 x \\
& \Rightarrow \quad x=\frac{28.8 \times 10}{0.9} \times 10 \Rightarrow x=\frac{288}{9}=32 \mathrm{~cm}
\end{aligned}
$$

EXERCISE 1.4

1. Determine whether the graph given below represent functions. Give reason for your answers concerning each graph.
(i)

(ii)

(iii)

(iv)

(i)

(ii)

(i) It is not a function. The graph meets the vertical line at more than one points.
(ii) It is a function as the curve meets the vertical line at only one point.
(iii) It is not a function as it meets the vertical line at more than one points.
(iv) It is a function as it meets the vertical line at only one point.
2. Let $f: A \rightarrow B$ be a function defined by $f(x)=\frac{x}{2}-1$, where $A=\{2,4,6,10,12\}, B=\{0,1,2,4,5,9\}$.

Represent f by

[Govt. MQP - 2019]
(i) set of ordered pairs;
(ii) a table;
(iii) an arrow diagram;
(iv) a graph

Sol. $f: \mathrm{A} \rightarrow \mathrm{B}$
$A=\{2,4,6,10,12\}, B=\{0,1,2,4,5,9\}$

$$
\begin{array}{l|l}
f(x)=\frac{x}{2}-1, & f(2)=\frac{2}{2}-1=0 \\
f(4)=\frac{4}{2}-1=1 & f(6)=\frac{6}{2}-1=2 \\
f(10)=\frac{10}{2}-1=4 & f(12)=\frac{12}{2}-1=5
\end{array}
$$

(i) Set of ordered pairs

$$
=\{(2,0),(4,1),(6,2),(10,4),(12,5)\}
$$

(ii) a table

x	2	4	6	10	12
$f(x)$	0	1	2	4	5

(iii) an arrow diagram;

(iv) a graph

3. Represent the function $f=\{(1,2),(2,2),(3,2)$,
$(4,3),(5,4)\}$ through
(i) an arrow diagram
(ii) a table form
(iii) a graph

Soll $f=\{(1,2),(2,2),(3,2),(4,3),(5,4)\}$
(i) An arrow diagram.

(ii) a table form

x	1	2	3	4	5
$f(x)$	2	2	2	3	4

(iii) A graph representation.

4. Show that the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=2 x-1$ is one - one but not onto.
SOl. $f: \mathbb{N} \rightarrow \mathbb{N}$

$$
\begin{aligned}
f(x) & =2 x-1 \\
\mathbb{N} & =\{1,2,3,4,5, \ldots\} \\
f(1) & =2(1)-1=1 \\
f(2) & =2(2)-1=3 \\
f(3) & =2(3)-1=5 \\
f(4) & =2(4)-1=7 \\
f(5) & =2(5)-1=9
\end{aligned}
$$

Hence $f: \mathbb{N} \rightarrow \mathbb{N}$ is a one-one function.
A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to be onto function if the range of f is equal to the co-domain of f.
Range $=\{1,3,5,7,9, \ldots\}$
Co-domain $=\{1,2,3, .$.
But here the range is not equal to co-domain. Therefore it is one-one but not onto function.
5. Show that the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(m)=m^{2}+m+3$ is one - one function.
SOl. $f: \mathbb{N} \rightarrow \mathbb{N}$

$$
\begin{aligned}
f(m) & =m^{2}+m+3 \\
\mathbb{N} & =\{1,2,3,4,5, \ldots\}, m \in \mathbb{N} \\
f(m) & =m^{2}+m+3 \\
f(1) & =1^{2}+1+3=5 \\
f(2) & =2^{2}+2+3=9 \\
f(3) & =3^{2}+3+3=15 \\
f(4) & =4^{2}+4+3=23
\end{aligned}
$$

In the figure, for different elements in the (X) domain, there are different images in $f(x)$. Hence $f: \mathbb{N} \rightarrow \mathbb{N}$ is a one to one but not onto function as the range of f is not equal to co-domain.
Co-domain $=\mathbb{N}$
Range $=\{5,9,15,23\}$
Hence it is proved.
6. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\mathbb{N}$. Let $f: \mathrm{A} \rightarrow \mathrm{B}$ be defined by $f(x)=x^{3}$ then,
[Hy - 2019]
(i) find the range of f
(ii) identify the type of function

Sol.

$$
\begin{aligned}
& \mathrm{A}=\{1,2,3,4\} \\
& \mathrm{B}=\mathbb{N}
\end{aligned}
$$

$$
f: \mathrm{A} \rightarrow \mathrm{~B}, f(x)=x^{3}
$$

(i) $\quad f(1)=1^{3}=1$
$f(2)=2^{3}=8$
$f(3)=3^{3}=27$
$f(4)=4^{3}=64$
(ii) The range of $f=\{1,8,27,64, \ldots$.
(iii)

Here co-domain $=\mathrm{N}=\{1,2,3 \ldots\}$
Range $=\{1,8,27,64\}$
Different elements have different images and co-domain $=$ Range.
\therefore The given function is one - one into function.
7. In each of the following cases state whether the function is bijective or not. Justify your answer.
(i) $\quad f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x+1$
(ii) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=3-4 x^{2}$

Sol. Given $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=2 x+1$
(i) When $x=1$,

$$
\begin{aligned}
f(1) & =2(1)+1=3 \\
f(2) & =2(2)+1=5 \\
f(0) & =2(0)+1=1 \\
f(-1) & =2(-1)+1=-2+1=-1 \\
f\left(\frac{1}{2}\right) & =2\left(\frac{1}{2}\right)+1=1+1=2 \text { and so on }
\end{aligned}
$$

Here, different element in domain have different images in B and Co-domain
$=$ Range $=$ R.
$\therefore f$ is a bijective function.
(ii) Given $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3-4 x^{2}$

$$
\begin{aligned}
f(1) & =3-4\left(1^{2}\right)=3-4(1) \\
& =3-4=-1 \\
f(2) & =3-4\left(2^{2}\right)=3-4(4) \\
& =3-16=-13 \\
f(0) & =3-4(0)^{2}=3-0=3 \\
f(-1) & =3-4(-1)^{2}=3-4(1) \\
& =3-4=-1
\end{aligned}
$$

Here, different element in domain do not have different images in B. Since 1 and -1 are related to -1 .
$\therefore f$ is not one - one. Hence, f is not a bijective function.
8. Let $A=\{-1,1\}$ and $B=\{0,2\}$. If the function $f: A \rightarrow B$ defined by $f(x)=a x+b$ is an onto function? Find a and b.
Sol. Given $\mathrm{A}=\{-1,1\}, \mathrm{B}=\{0,2\}$ and $f: \mathrm{A} \rightarrow \mathrm{B}$ is defined by $f(x)=a x+b$ is an onto function.

$$
\begin{align*}
& f(-1)=0 \\
& \Rightarrow \quad a(-1)+b=0 \quad[\because \text { Sub } x=-1, y=0 \\
& \text { in } y=a x+b] \\
& \Rightarrow \quad-a+b=0 \\
& \text { Also } f(1)=2 \\
& \Rightarrow \quad a(1)+b=2 \quad[\because \operatorname{Sub} x=1, y=2 \\
& \Rightarrow \quad \not a+b=2 \tag{2}\\
& \text { in } y=a x+b] \\
& \begin{array}{l}
\Rightarrow(1) \Rightarrow \quad-a+b=2 \\
-a t+b=0
\end{array} \\
& \text { Adding, } \quad 2 b=2 \\
& \Rightarrow \quad b=\frac{2}{2}=1 \\
& \text { Substituting } \quad b=1 \text { in (2) we get } \\
& a+1=2 \quad \Rightarrow a=2-1=1 \\
& \therefore a=1, b=1
\end{align*}
$$

9. If the function f is defined by
$f(x)=\left[\begin{array}{rl}x+2 ; & x>1 \\ 2 ; & -1 \leq x \leq 1 \\ x-1 ; & -3<x<-1\end{array} \quad\right.$ find the values of
(i) $f(3)$
(ii) $f(0)$
(iii) $f(-1.5)$
(iv) $f(2)+f(-2)$

Sol. (i) $f(3) \Rightarrow f(x)=x+2 \Rightarrow 3+2=5[\because x=3]$
(ii) $f(0) \Rightarrow 2 \quad[\because 0 \in-1 \leq x \leq 1]$
(iii) $f(-1.5)=x-1=-1.5-1=-2.5$
(iv) $f(2)+f(-2)$

$$
\begin{aligned}
f(2) & =2+2=4 \quad[\because f(x)=x+2] \\
f(-2) & =-2-1=-3 \quad[\because f(x)=x-1] \\
f(2)+f(-2) & =4-3=1
\end{aligned}
$$

10. A function $f:[-5,9] \rightarrow \mathbb{R}$ is defined as follows:
$f(x)=\left\{\begin{array}{c}6 x+1 ;-5 \leq x<2 \\ 5 x^{2}-1 ; 2 \leq x<6 \\ 3 x-4 ; 6 \leq x \leq 9\end{array}\right.$
Find (i) $f(-3)+f(2)$ (ii) $f(7)-f(1)[$ PTA - 4]
(iii) $2 f(4)+f(8)$
(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$ [PTA-4]

Sol. $\quad f:[-5,9] \rightarrow \mathbb{R}$
(i) $\quad f(-3)+f(2)$

$$
\begin{aligned}
f(-3) & =6 x+1=6(-3)+1=-17 \\
f(2) & =5 x^{2}-1=5\left(2^{2}\right)-1=19 \\
\therefore f(-3)+f(2) & =-17+19=2
\end{aligned}
$$

(ii) $f(7)-f(1)$
$f(7)=3 x-4=3(7)-4=17$
$f(1)=6 x+1=6(1)+1=7$
$f(7)-f(1)=17-7=10$
(iii) $2 f(4)+f(8)$

$$
f(4)=5 x^{2}-1=5 \times 4^{2}-1=79
$$

$$
f(8)=3 x-4=3 \times 8-4=20
$$

$$
\therefore 2 f(4)+f(8)=2 \times 79+20=178
$$

(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

$$
\begin{aligned}
f(-2) & =6 x+1=6(-2)+1=-11 \\
f(6) & =3 x-4=3(6)-4=14 \\
f(4) & =5 x^{2}-1=5\left(4^{2}\right)-1=79 \\
f(-2) & =6 x+1=6(-2)+1=-11 \\
\frac{2 f(-2)-f(6)}{f(4)+f(-2)} & =\frac{2(-11)-14}{79+(-11)}=\frac{-22-14}{68} \\
& =\frac{-36}{68}=\frac{-9}{17}
\end{aligned}
$$

11. The distance S an object travels under the influence of gravity in time \boldsymbol{t} seconds is given by $\mathrm{S}(t)=\frac{1}{2} g t^{2}+a t+b$ where, $(g$ is the acceleration due to gravity), a, b are constants. Verify whether the function $S(t)$ is one-one or not.
[PTA - 3]
Soll

$$
\mathrm{S}(t)=\frac{1}{2} g t^{2}+a t+b
$$

Let t be $1,2,3, \ldots$, seconds.

$$
\begin{aligned}
\mathrm{S}(1) & =\frac{1}{2} g\left(1^{2}\right)+a(1)+b=\frac{1}{2} g+a+b \\
\mathrm{~S}(2) & =\frac{1}{2} g\left(2^{2}\right)+a(2)+b \\
& =2 g+2 a+b
\end{aligned}
$$

Yes, for every different values of t, there will be different values as images. And there will be different pre-images for the different values of the range. Therefore it is one-one function.
12. The function ' t ' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by $t(C)=F$ where $F=\frac{9}{5} C+32$. Find,
(i) $t(0) \quad$ [PTA - 1]
(ii) $t(28)$
(iii) $t(-10)$
(iv) the value of C when $t(\mathrm{C})=212$ [PTA - 1]
(v) the temperature when the Celsius value is equal to the Fahrenheit value. [PTA - 1]
Sol. (i)

$$
t(0)=\mathrm{F}
$$

$$
\mathrm{F}=\frac{9}{5}(\mathrm{C})+32=\frac{9}{5}(0)+32=32^{\circ} \mathrm{F}
$$

(ii) $t(28)=\mathrm{F}=\frac{9}{5}(28)+32=\frac{252}{5}+32$

$$
=50.4+32=82.4^{\circ} \mathrm{F}
$$

(iii) $t(-10)=\mathrm{F}=\frac{9}{5}(-10)+32=14^{\circ} \mathrm{F}$
(iv) $t(\mathrm{C})=212$
i.e $\frac{9}{5}(\mathrm{C})+32=212 \Rightarrow \frac{9}{5} \mathrm{C}=212-32=180$

$$
\begin{aligned}
\frac{9}{5} \mathrm{C} & =180 \Rightarrow \mathrm{C}=\frac{{ }^{20} 80 \times 5}{\ngtr}=100^{\circ} \mathrm{C} \\
\mathrm{C} & =100^{\circ} \mathrm{C}
\end{aligned}
$$

(v) when $\mathrm{C}=\mathrm{F}$

$$
\begin{aligned}
\frac{9}{5} \mathrm{C}+32 & =\mathrm{C} \\
32 & =\mathrm{C}-\frac{9}{5} \mathrm{C} \\
32 & =\mathrm{C}\left(1-\frac{9}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
32 & =C\left(\frac{5-9}{5}\right) \\
32 & =C\left(\frac{-4}{5}\right) \\
C & =32 \times \frac{-5}{4} \\
C & =-40^{\circ}
\end{aligned}
$$

EXERCISE 1.5

1. Using the functions f and g given below, find $f 0 g$ and $g 0 f$. Check whether $f 0 g=g 0 f$.
(i) $f(x)=x-6, g(x)=x^{2}$
(ii) $f(x)=\frac{2}{x}, g(x)=2 x^{2}-1$
(iii) $f(x)=\frac{x+6}{3}, g(x)=3-x$
(iv) $f(x)=3+x, g(x)=x-4 \quad$ [Govt. MQP - 2019]
(v) $f(x)=4 x^{2}-1, g(x)=1+x$

Sol.
(i) Given $f(x)=x-6, g(x)=x^{2}$

$$
\begin{align*}
f o g(x) & =f(g(x))=f\left(x^{2}\right) \quad\left[\because g(x)=x^{2}\right] \\
& =x^{2}-6 \\
{[\operatorname{In} f(x)} & \left.=x-6, \text { Replace } x \text { by } x^{2}\right] \quad \ldots(1) \\
g o f(x) & =g(f(x))=g(x-6) \\
& =(x-6)^{2} \quad[\because f(x)=x-6] \\
& {\left[\operatorname{In} g(x)=x^{2}, \text { Replace } x \text { by } x-6\right] } \\
& =x^{2}-12 x+36 \\
& {\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right] \ldots(2) }
\end{align*}
$$

From (1) and (2),

$$
f \circ g(x) \neq \operatorname{gof}(x)
$$

(ii) Given $f(x)=\frac{2}{x}, g(x)=2 x^{2}-1$

$$
\begin{aligned}
f \circ g(x) & =f(g(x))=f\left(2 x^{2}-1\right) \\
& =\frac{2}{2 x^{2}-1} \quad\left[\because g(x)=2 x^{2}-1\right]
\end{aligned}
$$

$\left[\operatorname{In} f(x)=\frac{2}{x}\right.$. Replace x by $\left.2 x^{2}-1\right] \ldots$ (1)
$g o f(x)=g(f(x))=g\left(\frac{2}{x}\right) \quad\left[\because f(x)=\frac{2}{x}\right]$

$$
=2\left(\frac{2}{x}\right)^{2}-1
$$

$\left[\operatorname{In} g(x)=2 x^{2}-1\right.$, Replace x by $\frac{2}{x}$]

$$
\begin{equation*}
=2\left(\frac{4}{x^{2}}\right)-1=\frac{8}{x^{2}}-1 \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
f \circ g(x) \neq \operatorname{gof}(x)
$$

(iii) Given $f(x)=\frac{x+6}{3}, g(x)=3-x$

$$
\begin{aligned}
f \circ g(x) & =f(g(x))=f(3-x)[\because g(x)=3-x] \\
& =\frac{3-x+6}{3}
\end{aligned}
$$

$$
\left[\operatorname{In} f(x)=\frac{x+6}{3} \text {, Replace } x \text { by } 3-x\right]
$$

$$
\begin{equation*}
=\frac{9-x}{3} \tag{1}
\end{equation*}
$$

$$
g \circ f(x)=g(f(x))=g\left(\frac{x+6}{3}\right)
$$

$$
=3-\left(\frac{x+6}{3}\right)
$$

$$
\left[\because f(x)=\frac{x+6}{3}\right]
$$

[In $g(x)=3-x$, Replace x by $\frac{x+6}{3}$]

$$
\begin{equation*}
=\frac{9-x-6}{3}=\frac{3-x}{3} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
f \circ g(x) \neq \operatorname{gof}(x)
$$

(iv) Given $f(x)=3+x, g(x)=x-4$

$$
\begin{align*}
f \circ g(x) & =f(g(x))=f(x-4)[\because g(x)=x-4] \\
& =3+(x-4) \\
& {[\operatorname{In} f(x)=3+x, \text { Replace } x \text { by } x-4] } \\
& =3+x-4=x-1 \\
g \circ f(x) & =g(f(x))=g(3+x) \\
& =3+x-4 \quad \ldots(1) \\
& {[\operatorname{In} g(x)=x-4, \text { Replace } x \text { by } 3+x] } \\
& =x-1 \tag{2}
\end{align*}
$$

From (1) and (2),

$$
f \circ g(x)=g \circ f(x)
$$

(v) Given $f(x)=4 x^{2}-1, g(x)=1+x$

$$
\begin{aligned}
& f \circ g(x)=f(g(x))=f(1+x)[\because g(x)=1+x] \\
&=4(1+x)^{2}-1 \\
& {\left[\operatorname{In} f(x)=4 x^{2}-1, \text { Replace } x \text { by } 1+x\right] } \\
&=4\left(1+x^{2}+2 x\right)-1=4+4 x^{2}+8 x-1 \\
&=4 x^{2}+8 x+3 \\
& g \circ f(x)=g(f(x))=g\left(4 x^{2}-1\right) \\
& \quad\left[\because f(x)=4 x^{2}-1\right] \\
&=1+4 x^{2}-1
\end{aligned}
$$

[In $g(x)=1+x$, Replace x by $\left.4 x^{2}-1\right]$

$$
\begin{equation*}
=4 x^{2} \tag{2}
\end{equation*}
$$

From (1) and (2),
$f \circ g(x) \neq \operatorname{g\circ } f(x)$
2. Find the value of k, such that $f 0 g=g 0 f$
(i) $f(x)=3 x+2, \mathrm{~g}(x)=6 x-k \quad[\mathrm{Hy}-2019]$
(ii) $f(x)=2 x-k, g(x)=4 x+5$

Sol. (i) Given $f(x)=3 x+2, g(x)=6 x-k$ and
$f \circ g=g o f$

$$
\begin{align*}
& f \circ g(x)=f(g(x))=f(6 x-k) \\
& \quad[\because g(x)=6 x-k] \\
& =3(6 x-k)+2 \\
& {[\operatorname{In} f(x)=3 x+2, \text { Replace } x \text { by } 6 x-k]} \\
& \quad=18 x-3 k+2 \tag{1}
\end{align*}
$$

Now $g \circ f(x)=g(f(x))=g(3 x+2)$

$$
[\because f(x)=3 x+2]
$$

$$
=6(3 x+2)-k
$$

[In $g(x)=6 x-k$, Replace x by $3 x+2$]

$$
=18 x+12-k
$$

Also it is given that $f o g=g o f$
$\Rightarrow \quad 18 x-3 k+2=18 x+12-k$
[Using (1) and (2)]
$\Rightarrow \quad-3 k+2=12-k$
$\Rightarrow \quad-3 k+k=12-2$
$\Rightarrow \quad-2 k=12-2$
\Rightarrow

$$
\begin{aligned}
& -2 k=12-2 \\
& -2 k=10 \Rightarrow k=\frac{10}{-2}=-5 \\
& \therefore k=-5
\end{aligned}
$$

(ii)

$$
f(x)=2 x-k, g(x)=4 x+5
$$

$$
f \circ g(x)=f(g(x))=f(4 x+5)
$$

$$
[\because g(x)=4 x+5]
$$

$$
=2(4 x+5)-k
$$

$[\because$ In $f(x)=2 x-k$, Replace x by $4 x+5]$

$$
=8 x+10-k
$$

$$
g \circ f(x)=g(f(x))=g(2 x-k)
$$

$$
[\because f(x)=2 x-k]
$$

$$
=4(2 x-k)+5
$$

[In $g(x)=4 x+5$, Replace x by $2 x-k$]

$$
\begin{equation*}
=8 x-4 k+5 \tag{2}
\end{equation*}
$$

Given that

$$
\begin{aligned}
f \circ g(x) & =g o f(x) \\
\Rightarrow 8\{+10-k & =8 K-4 k+5
\end{aligned}
$$

[From (1) and (2)]
$\Rightarrow \quad 10-k=-4 k+5 \quad \Rightarrow-k+4 k=5-10$
$\Rightarrow \quad 3 k=-5 \quad \Rightarrow \quad k=\frac{-5}{3}$
3. If $f(x)=2 x-1, g(x)=\frac{x+1}{2}$, show that $f 0 g=g o f=x$.
Sol. Given $f(x)=2 x-1, g(x)=\frac{x+1}{2}$

$$
\begin{aligned}
\text { S.T } f o g & =g o f=x \\
f \circ g(x) & =f(g(x))=f\left(\frac{x+1}{2}\right)
\end{aligned}
$$

$$
\left[\because g(x)=\frac{x+1}{2}\right]
$$

$$
=\not z\left(\frac{x+1}{z}\right)-1
$$

$$
\begin{align*}
& {\left[\because \operatorname{In} f(x)=2 x-1, \text { Replace } x \text { by } \frac{x+1}{2}\right]} \\
& \quad=x+1-1=x \tag{1}
\end{align*}
$$

Now,

$$
g o f(x)=g(f(x))=g(2 x-1)
$$

$$
=\frac{2 x-x+x}{2}
$$

$$
[\because f(x)=2 x-1]
$$

[$\operatorname{In} g(x)=\frac{x+1}{2}$, Replace x by $\left.2 x-1\right]$

$$
\begin{equation*}
=\frac{2 x}{2}=x \tag{2}
\end{equation*}
$$

From (1) and (2)
$f \circ g(x)=g \circ f(x)=x$ Hence proved.
4. If $f(x)=x^{2}-1, g(x)=x-2$ find a, if $g o f(a)=1$.
[PTA - 2]
Sol Given $f(x)=x^{2}-1, g(x)=x-2$

$$
\begin{aligned}
g \circ f(x) & =g(f(x))=g\left(x^{2}-1\right) \\
& =x^{2}-1-2
\end{aligned}
$$

$\left[\because \operatorname{In} g(x)=x-2\right.$, Replace x by $\left.x^{2}-1\right]$

$$
=x^{2}-3
$$

$\therefore g o f(a)=a^{2}-3 \quad[$ Replacing x by $a]$ Given that $\operatorname{gof}(a)=1$
$\Rightarrow \quad a^{2}-3=1 \Rightarrow a^{2}=4$
$\Rightarrow \quad a= \pm \sqrt{4} \Rightarrow a= \pm 2$
5. Let $\mathrm{A}, \mathrm{B}, \mathrm{C} \subseteq \mathbb{N}$ and a function $f: \mathrm{A} \rightarrow \mathrm{B}$ be defined by $f(x)=2 x+1$ and $g: B \rightarrow C$ be defined by $g(x)=x^{2}$. Find the range of $f 0 g$ and $g o f$.
Sold

$$
\begin{align*}
& \text { Given } f(x)=2 x+1 \text { and } \\
& g(x)= x^{2} \\
& f \circ g(x)=f(g(x))=f\left(x^{2}\right) \quad\left[\because g(x)=x^{2}\right] \\
&=2 x^{2}+1 \\
& {\left[\operatorname{In} f(x)=2 x+1, \text { replace } x \text { by } x^{2}\right] } \\
& \therefore f \circ g(x)= 2 x^{2}+1 \tag{1}\\
& g o f(x)= g(f(x))=g(2 x+1) \quad \ldots(1) \\
&=(2 x+1)^{2} \quad[\because f(x)=2 x+1] \\
& {\left[\operatorname{Ing} g(x)=x^{2}, \text { replace } x \text { by } 2 x+1\right] } \\
& {\left[\because(a+b)^{2}=a^{2}+2 a b+b^{2}\right] }
\end{align*}
$$

Now $f: \mathrm{A} \rightarrow \mathrm{B}$, and $g: \mathrm{B} \rightarrow \mathrm{C}$
$\therefore f o g: \mathrm{C} \rightarrow \mathrm{A}$ and $\mathrm{A}, \mathrm{B}, \mathrm{C} \subseteq \mathrm{N}$
\therefore Range of $f o g$ is
$\left\{y / y=2 x^{2}+1, x \in \mathrm{C}\right\}$ and
Range of $g o f$ is
$\left\{y / y=(2 x+1)^{2}, x \in \mathrm{~N}\right\}[\because g o f: \mathrm{A} \rightarrow \mathrm{C}]$
6. If $f(x)=x^{2}-1$. Find (i) $f \circ f$, (ii) $f \circ f \circ f$

Sol.
(i) $f \circ f$

$$
\begin{aligned}
f \circ f(x) & =f(f(x))=f\left(x^{2}-1\right) \\
& \quad\left[\because f(x)=x^{2}-1\right] \\
& =\left(x^{2}-1\right)^{2}-1
\end{aligned}
$$

$\left[\operatorname{In} f(x)=x^{2}-1\right.$, replace x by $\left.x^{2}-1\right]$
$=x^{4}-2 x^{2}+\not \lambda-\nless$
$\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right.$ Here $\left.a=x^{2}, b=1\right]$

$$
\begin{equation*}
f o f(x)=x^{4}-2 x^{2} \tag{1}
\end{equation*}
$$

(ii) $\quad \boldsymbol{f 0} f \mathbf{0} \mathbf{f}=f o[f o f(x)]$

$$
\begin{aligned}
& =f o\left[x^{4}-2 x^{2}\right] \quad[\text { Using }(1)] \\
& =f\left(x^{4}-2 x^{2}\right) \\
& =\left(x^{4}-2 x^{2}\right)^{2}-1
\end{aligned}
$$

$\left[\operatorname{In} f(x)=x^{2}-1\right.$, replace x by $\left.x^{4}-2 x^{2}\right]$
$\therefore \operatorname{fofof}(x)=x^{8}-4 x^{6}+4 x^{4}-1$
$\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right.$ Here $\left.a=x^{4}, b=-2 x^{2}\right]$
7. If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $f(x)=x^{5}$ and $g(x)=x^{4}$ then check if f, g are one-one and $f 0 g$ is one-one?
[PTA - 6]
Sol. Given $f(x)=x^{5}$
$g(x)=x^{4}$
$f \circ g(x)=f(g(x))=f\left(x^{4}\right) \quad\left[\because g(x)=x^{4}\right]$
$=\left(x^{4}\right)^{5}\left[\operatorname{In} f(x)=x^{5}\right.$, replace x by $\left.x^{4}\right]$

$$
=x^{20}
$$

$\therefore f \circ g(x)=x^{20}$
Now, $f \circ g(1)=1^{20}=1$
and $f \circ g(-1)=(-1)^{20}=1[\because 20$ is an even number $]$
\therefore Two elements 1 and -1 have same image as 1 .
$\therefore f \circ g(x)$ is not one-one.
8. Consider the functions $f(x), \mathrm{g}(x), \boldsymbol{h (x)}$ as given below. Show that $(f 0 g) o h=f 0(g o h)$ in each case.
(i) $f(x)=x-1, \mathrm{~g}(x)=3 x+1$ and $h(x)=x^{2}$
(ii) $f(x)=x^{2}, g(x)=2 x$ and $h(x)=x+4$
(iii) $f(x)=x-4, g(x)=x^{2}$ and $h(x)=3 x-5$
[PTA - 2]
(i) Given $f(x)=x-1, \mathrm{~g}(x)=3 x+1$ and $h(x)=x^{2}$

Sol. Consider $f \circ g(x)=f(g(x))=f(3 x+1)$
$[\because g(x)=3 x+1]$

$$
=3 x+\not \lambda-\not \subset
$$

[$\operatorname{In} f(x)=x-1$, replace x by $3 x+1]$

$$
\begin{aligned}
\therefore f o g & =3 x \\
\text { LHS } & =(f o g) h=f o g(h(x)) \\
& =f o g\left(x^{2}\right) \quad\left[\because h(x)=x^{2}\right] \\
& =3 x^{2}\left[\operatorname{In} f o g=3 x, \text { replace } x \text { by } x^{2}\right] \\
\text { RHS } & =f 0(g o h)=f(g(h(x))
\end{aligned}
$$

$$
\begin{align*}
&=f\left(g\left(x^{2}\right)\right) \quad\left[\because h(x)=x^{2}\right] \\
&=f\left(3 x^{2}+1\right) \\
& \quad\left[\operatorname{In} g(x)=x-1, \text { replace } x \text { by } x^{2}\right] \\
&=3 x+\nsim-\nless \\
& {\left[\operatorname{In} f(x)=3 x+1, \text { replace } x \text { by } 3 x^{2}+1\right] } \\
&=3 x^{2} \tag{2}\\
& \therefore \text { LHS }=\text { RHS }
\end{align*}
$$

[From (1) and (2)] Hence proved.
(ii) Given $f(x)=x^{2}, g(x)=2 x, h(x)=x+4$

Consider $f \circ g(x)=f(g(x))=f(2 x)[\because g(x)=2 x]$
$=\left(2 x^{2}\right)\left[\operatorname{In} f(x)=x^{2}\right.$, replace x by $\left.2 x\right]$
$=4 x^{2}$
LHS $(f o g) o h=f o g(h(x))$
$=f \circ g(x+4) \quad[\because h(x)=x+4]$
$=4(x+4)^{2}$
[In $f \circ g=4 x^{2}$, replace x by $\left.x+4\right]$
$=4\left(x^{2}+8 x+16\right)$
$\left[\because(a+b)^{2}=a^{2}+2 a b+b^{2}\right.$. Here $\left.a=x, b=4\right]$
$=4 x^{2}+32 x+64$
RHS $=f o(g o h)=f(g(h(x))$
$=f(g(x+4)) \quad[\because h(x)=x+4]$
$=f(2(x+4))$
$[\operatorname{In} g(x)=2 x$, replace x by $x+4]$
$=f(2 x+8)=(2 x+8)^{2}$
$\left[\operatorname{In} f(x)=x^{2}\right.$, replace x by $\left.2 x+8\right]$
$=4 x^{2}+32 x+64$
$\left[\because(a+b)^{2}=a^{2}+2 a b+b^{2}\right.$. Here $\left.a=2 x, b=8\right]$ LHS $=$ RHS
From (1) and (2)
Hence proved.
(iii) $f(x)=x-4, g(x)=x^{2}, h(x)=3 x-5$

Consider

$$
\begin{align*}
& f \circ g(x)= f(g(x))=f\left(x^{2}\right) \quad\left[\because g(x)=x^{2}\right] \\
&=x^{2}-4 \\
& {\left[\operatorname{In} f(x)=x-4, \text { replace } x \text { by } x^{2}\right] } \\
& \text { LHS }=(f \circ g) \mathrm{o} h \\
&=(f \circ g)(h(x))=f \circ g(3 x-5) \\
&= \quad(3 x-5)^{2}-4 \\
& {[\operatorname{In} f \circ g(x)=3 x-5] } \\
&= 9 x^{2}-30 x+25-4 \\
& {\left[\because(a-b)^{2}\right.}\left.=a^{2}-2 a b+b^{2} \text { Here } a=3 x, b=5\right] \\
&= 9 x^{2}-30 x+21 \\
& \text { RHS }= f \circ(g o h)(x)=f(g(h(x)) \tag{1}\\
&= f(g(3 x-5) \quad[\because h(x)=3 x-5] \\
&= f(3 x-5)^{2} \\
& {\left[\operatorname{In} g(x)=x^{2}, \text { replace } x \text { by } 3 x-5\right] } \\
&=(3 x-5)^{2}-4
\end{align*}
$$

$$
\begin{gather*}
{[\operatorname{In} f(x)=x-4, \text { replace } x \text { by } 3 x-5]} \\
=9 x^{2}-30 x+25-4 \\
{\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2} \text { Here } a=3 x, b=5\right]} \\
=9 x^{2}-30 x+21 \tag{2}
\end{gather*}
$$

From (1) and (2)

$$
\text { LHS }=\text { RHS } \quad \text { Hence proved. }
$$

9. Let $f=\{(-1,3),(0,-1),(2,-9)\}$ be a linear function from \mathbb{Z} into \mathbb{Z}. Find $f(x)$.
Sol. Given $f=\{(-1,3),(0,-1),(2,-9)\}$ is a linear function from \mathbb{Z} into \mathbb{Z}.
Since f is a linear function, let $y=a x+b$ be the linear function which is of degree one.
Sub $(-1,3)$ in $y=a x+b$, we get

$$
\begin{equation*}
3=a(-1)+b \Rightarrow-a+b=3 \tag{1}
\end{equation*}
$$

Sub $(0,-1)$ in $y=a x+b$, we get

$$
-1=a(0)+b \Rightarrow-1=b \Rightarrow b=-1
$$

Sub $b=-1$ in (1) we get,

$$
-a-1=3 \Rightarrow-a=3+1=4
$$

$\Rightarrow \quad a=-4$
Sub $a=-4, b=-1$ in $y=a x+b$ we get,

$$
y=-4 x-1
$$

\therefore The required linear function is $-4 x-1$.
10. In electrical circuit theory, a circuit $\mathbf{C}(t)$ is called a linear circuit if it satisfies the superposition principle given by $\mathbf{C}\left(a t_{1}+b t_{2}\right)$ $=a \mathrm{C}\left(t_{1}\right)+b \mathrm{C}\left(t_{2}\right)$, where a, b are constants.
Show that the circuit $\mathbf{C}(t)=3 \boldsymbol{t}$ is linear.
Sol. Given $\mathrm{C}\left(a t_{1}+b t_{2}\right)=a . c\left(t_{1}\right)+b . c\left(t_{2}\right)$
Let $\mathrm{C}(t)=3 t$

$$
\begin{align*}
\text { LHS } & =\mathrm{C}\left(a t_{1}+b t_{2}\right)=3\left(a t_{1}+b t_{2}\right) \\
& =3 a t_{1}+3 b t_{2} \tag{1}\\
\text { RHS } & =a \cdot c\left(t_{1}\right)+b . c\left(t_{2}\right)=a .3 t_{1}+b .3 t_{2} \\
& {\left[\because c\left(t_{1}\right)=3 t_{1} \text { and } c\left(t_{2}\right)=3 t_{2}\right] } \\
& =3 a t_{1}+3 b t_{2} \\
\text { LHS } & =\text { RHS }
\end{align*}
$$

From (1) and (2)
Hence $\mathrm{C}(t)=3 t$ is linear function.

EXERCISE 1.6

Multiple choice questions.

1. If $\boldsymbol{n}(\mathrm{A} \times \mathrm{B})=\mathbf{6}$ and $\mathrm{A}=\{1,3\}$ then $\boldsymbol{n}(\mathrm{B})$ is
(A) 1
(B) 2
(C) 3
(D) 6
[Ans. (C) 3]

Hint:

$$
\begin{aligned}
\text { If } n(\mathrm{~A} \times \mathrm{B}) & =6 \\
\mathrm{~A} & =\{1,1\}, n(\mathrm{~A})=2 \\
n(\mathrm{~B}) & =3
\end{aligned}
$$

2. $\mathrm{A}=\{a, b, p\}, \mathrm{B}=\{2,3\}, \mathrm{C}=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is
[PTA - 3]
(A) 8
(B) 20
(C) 12
(D) 16
[Ans. (C) 12]

$$
\begin{aligned}
\text { Hint: } \quad \begin{aligned}
& \mathrm{A}=\{a, b, p\}, \mathrm{B}=\{2,3\}, \\
& \mathrm{C}:=\{p, q, r, s\} \\
& n(\mathrm{~A} \cup \mathrm{C}) \times \mathrm{B} \\
& \mathrm{~A} \cup \mathrm{C}:=\{a, b, p, q, r, s\} \\
&(\mathrm{A} \cup \mathrm{C}) \times \mathrm{B} \quad=\{(a, 2),(a, 3),(b, 2),(b, 3),(p, 2), \\
&(p, 3),(q, 2),(q, 3),(r, 2),(r, 3), \\
& n[(\mathrm{~A} \cup \mathrm{C}) \times \mathrm{B}]= 12
\end{aligned},(s, 2),(s, 3\}
\end{aligned}
$$

3. If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true.
[Sep.- 2020]
(A) $(\mathrm{A} \times \mathrm{C}) \subset(\mathrm{B} \times \mathrm{D})$
(B) $(\mathrm{B} \times \mathrm{D}) \subset(\mathrm{A} \times \mathrm{C})$
(C) $(\mathrm{A} \times \mathrm{B}) \subset(\mathrm{A} \times \mathrm{D})$
(D) $(\mathrm{D} \times \mathrm{A}) \subset(\mathrm{B} \times \mathrm{A})$
[Ans. (A) $(\mathbf{A} \times \mathbf{C}) \subset(\mathbf{B} \times \mathbf{D})]$
Hint: $\mathrm{A}=\{1,2\}, \mathrm{B}=\{1,2,3,4\}$, $\mathrm{C}=\{5,6\}, \mathrm{D}=\{5,6,7,8\}$
$\mathrm{A} \times \mathrm{C}=\{(1,5),(1,6),(2,5),(2,6)\}$
$B \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6)$, $(2,7),(2,8),(3,5),(3,6),(3,7)$, $(3,8)\}$
$\therefore(\mathrm{A} \times \mathrm{C}) \subset \mathrm{B} \times \mathrm{D} \quad$ It is true.
4. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of elements in B is
[PTA - 2]
(A) 3
(B) 2
(C) 4
(D) 8
[Ans. (B) 2]
Hint:

$$
\text { It: } \begin{aligned}
n(\mathrm{~A}) & =5 \\
n(\mathrm{~B}) & =x \\
n(\mathrm{~A} \times \mathrm{B}) & =1024=2^{10} \\
\Rightarrow \quad 2^{5 x} & =2^{10} \quad \Rightarrow 5 x=10 \\
\Rightarrow \quad x & =2
\end{aligned}
$$

5. The range of the relation $\mathrm{R}=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than $\mathbf{1 3}\}$ is [PTA-4; Hy -2019]
(A) $\{2,3,5,7\}$
(B) $\{2,3,5,7,11\}$
(C) $\{4,9,25,49,121\}$
(D) $\{1,4,9,25,49,121\}$
[Ans. (C) $\{4,9,25,49,121\}]$
Hint: $\mathrm{R}=\left\{\left(x, x^{2}\right) / x\right.$ is a prime number $\left.<13\right\}$
The squares of $2,3,5,7,11$ are
$\{4,9,25,49,121\}$
6. If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is
(A) $(2,-2)$
(B) $(5,1)$
(C) $(2,3)$
(D) $(3,-2)$
[Ans. (D) (3, -2)]
Hint: $(a+2,4),(5,2 a+b) \Rightarrow a+2=5$

$$
\begin{aligned}
a & =3 \Rightarrow 2 a+b=4 \\
6+b & =4 \Rightarrow b=-2
\end{aligned}
$$

7. Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(A) m^{n}
(B) n^{m}
(C) $2^{m n}-1$
(D) $2^{m n}$

Hint:
 Hint.

[Ans. (C) $\left.\mathbf{2}^{m n}-1\right]$

$$
n(\mathrm{~A})=m
$$

$$
n(\mathrm{~B})=n
$$

$n(\mathrm{~A} \times \mathrm{B})=m \times n=m n$
No. of relations $=2^{n(\mathrm{~A} \times \mathrm{B})}=2^{m n}$
Non-empty relations $=2^{m n}-1$
8. If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of \boldsymbol{a} and \boldsymbol{b} are respectively
[PTA - 1]
(A) $(8,6)$
(B) $(8,8)$
(C) $(6,8)$
(D) $(6,6)$
[Ans. (A) (8,6)]
Hint: $\{(a, 8),(6, b)\} \Rightarrow a=8 \Rightarrow b=6$
9. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$.

A function $f: A \rightarrow B$ given by $f=\{(1,4)$,
$(2,8),(3,9),(4,10)\}$ is a
[PTA -4]
(A) Many-one function
(B) Identity function
(C) One-to-one function
(D) Into function
[Ans. (C) One-to one function]
Hint: $\quad A=\{1,2,3,4), B=\{4,8,9,10\}$

10. If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$, Then $f 0 g$ is
[Hy - 2019]
(A) $\frac{3}{2 x^{2}}$
(B) $\frac{2}{3 x^{2}}$
(C) $\frac{2}{9 x^{2}}$
(D) $\frac{1}{6 x^{2}}$
[Ans. (C) $\frac{2}{9 x^{2}}$]
Hint: $f(x)=2 x^{2} \Rightarrow g(x)=\frac{1}{3 x}$

$$
\begin{aligned}
f \circ g & =f(g(x))=f\left(\frac{1}{3 x}\right)=2\left(\frac{1}{3 x}\right)^{2} \\
& =2 \times \frac{1}{9 x^{2}}=\frac{2}{9 x^{2}}
\end{aligned}
$$

11. If $\boldsymbol{f}: \mathbf{A} \rightarrow \mathrm{B}$ is a bijective function and if $\boldsymbol{n}(\mathrm{B})=7$, then $\boldsymbol{n}(\mathrm{A})$ is equal to
[PTA - 2]
(A) 7
(B) 49
(C) 1
(D) 14
[Ans. (A) 7]
Hint: In a bijective function, $n(\mathrm{~A})=n(\mathrm{~B}) \Rightarrow n(\mathrm{~A})=7$
12. Let f and g be two functions given by $f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$
$\mathrm{g}=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $\boldsymbol{f o} \boldsymbol{g}$ is
(A) $\{0,2,3,4,5\}$
(B) $\{-4,1,0,2,7\}$
(C) $\{1,2,3,4,5\}$
(D) $\{0,1,2\}$
[Ans. (D) $\{0,1,2\}$]
Hint: $\quad g \circ f=g(f(x))$

$$
\begin{aligned}
f \circ g & =f(g(x)) \\
& =\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}
\end{aligned}
$$

Range of $f \circ g=\{0,1,2\}$
13. Let $f(x)=\sqrt{1+x^{2}}$ then
(A) $f(x y)=f(x) \cdot f(y)$
(B) $f(x y) \geq f(x) \cdot f(y)$
(C) $f(x y) \leq f(x) \cdot f(y)$
(D) None of these
[Ans. (C) $f(x y) \leq f(x) . f(y)$]
Hint: $\sqrt{1+x^{2} y^{2}} \leq \sqrt{\left(1+x^{2}\right)} \sqrt{\left(1+y^{2}\right)}$
$\Rightarrow f(x y) \leq f(x) . f(y)$
14. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are
[PTA - 6]
(A) $(-1,2)$
(B) $(2,-1)$
(C) $(-1,-2)$
(D) $(1,2)$ [Ans.(B) $(\mathbf{2}, \mathbf{- 1})]$

Hint:

$$
\begin{aligned}
g(x) & =\alpha x+\beta \\
\alpha & =2 \\
\beta & =-1 \\
g(x) & =2 x-1 \\
g(1) & =2(1)-1=1 \\
g(2) & =2(2)-1=3 \\
g(3) & =2(3)-1=5 \\
g(4) & =2(4)-1=7
\end{aligned}
$$

15. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
[PTA - 5; Qy - 2019]
(A) linear
(B) cubic
(C) reciprocal
(D) quadratic
[Ans. (D) quadratic]

$$
\text { Hint: } \begin{aligned}
& f(x)=(x+1)^{3}-(x-1)^{3} \\
&=x^{3}+3 x^{2}+3 x+1-\left[x^{3}-3 x^{2}+3 x-1\right] \\
&=x^{6}+3 x^{2}+3 x+1-\not x^{6}+3 x^{2}-3 x+1=6 x^{2}+2
\end{aligned}
$$

It is a quadratic function.

Unit Exercise - 1

1. If the ordered pairs $\left(x^{2}-3 x, y^{2}+4 y\right)$ and $(-2,5)$ are equal, then find x and y.
Soll $\left(x^{2}-3 x, y^{2}+4 y\right)=(-2,5)$

$$
\begin{aligned}
x^{2}-3 x & =-2 \\
x^{2}-3 x+2 & =0 \\
(x-2)(x-1) & =0 \\
x & =2,1 \\
y^{2}+4 y & =5 \\
y^{2}+4 y-5 & =0 \\
(y+5)(y-1) & =0 \\
y & =-5,1
\end{aligned}
$$

2. The cartesian product $\mathbf{A} \times \mathbf{A}$ has 9 elements among which $(-1,0)$ and $(0,1)$ are found. Find the set A and the remaining elements of $A \times A$.
Sol.

$$
\begin{aligned}
\mathrm{A}= & \{-1,0,1\}, \mathrm{B}=\{1,0,-1\} \\
\mathrm{A} \times \mathrm{B}= & \{(-1,1),(-1,0),(-1,-1),(0,1), \\
& (0,0),(0,-1),(1,1),(1,0), \\
& (1,-1)\}
\end{aligned}
$$

3. Given that $f(x)=\left\{\begin{array}{cl}\sqrt{x-1} & x \geq 1 \\ 4 & x<1\end{array}\right.$. Find
$\begin{array}{ll}\text { (i) } f(0) & \text { (ii) } f(3)\end{array}$
(iii) $f(a+1)$ in terms of a.(Given that $a \geq 0$)

Sol. (i) $\quad f(0)=4$
(ii) $\quad f(3)=\sqrt{3-1}=\sqrt{2}$
(iii) $f(a+1)=\sqrt{a+1-1}=\sqrt{a}$
4. Let $A=\{9,10,11,12,13,14,15,16,17\}$ and let $f: \mathrm{A} \rightarrow \mathrm{N}$ be defined by $f(n)=$ the highest prime factor of $n \in A$. Write f as a set of ordered pairs and find the range of \boldsymbol{f}.
Sol. $\quad \mathrm{A}=\{9,10,11,12,13,14,15,16,17\}$ $f: \mathrm{A} \rightarrow \mathbb{N}$
$f(n)=$ the highest prime factor of $n \in \mathrm{~A}$ $f=\{(9,3),(10,5),(11,11),(12,3),(13$, 13), $(14,7),(15,5),(16,2),(17,17)\}$

Range $=\{3,5,11,13,7,2,17\}=\{2,3,5,7,11,13,17\}$
5. Find the domain of the function

Soll
$f(x)=\sqrt{1+\sqrt{1-\sqrt{1-x^{2}}}}$.

Domain of $f(x)=\{-1,0,1\}$
($x^{2}=1,-1,0$, because $\sqrt{1-x^{2}}$ should be +ve , or 0$)$
6. If $f(x)=x^{2}, g(x)=3 x$ and $h(x)=x-2$. Prove that $(f 0 g) \mathrm{o} h=f 0(g o h)$.

$$
\begin{align*}
f(x) & =x^{2} \\
g(x) & =3 x \\
h(x) & =x-2 \\
(f \circ g) o h & =x-2 \\
\mathrm{LHS} & =f \circ(g \circ h) \\
f \circ g & =f(g(x))=f(3 x)=(3 x)^{2}=9 x^{2} \\
(f \circ g) \circ h & =(f \circ g) h(x)=(f \circ g)(x-2) \\
& =9(x-2)^{2}=9\left(x^{2}-4 x+4\right) \\
& =9 x^{2}-36 x+36 \tag{1}
\end{align*}
$$

$$
\mathrm{RHS}=f \mathrm{o}(g \mathrm{go} h)
$$

$$
(g \circ h)=g(h(x))=g(x-2)
$$

$$
=3(x-2)=3 x-6
$$

$$
f 0(g o h)=f(3 x-6)=(3 x-6)^{2}
$$

$$
\begin{equation*}
=9 x^{2}-36 x+36 \tag{2}
\end{equation*}
$$

$$
(1)=(2)
$$

$$
\text { LHS }=\text { RHS }
$$

$(f o g) \mathrm{o} h=f \mathrm{o}(\mathrm{goh})$ is proved.
7. Let $A=\{1,2\}$ and $B=\{1,2,3,4\}, C=\{5,6\}$ and $\mathrm{D}=\{5,6,7,8\}$. Verify whether $\mathrm{A} \times \mathrm{C}$ is a subset of $B \times D$?

$$
\begin{aligned}
& \mathrm{A}==\{1,2), \mathrm{B}=\{1,2,3,4\} \\
& \mathrm{C}=\{5,6\}, \mathrm{D}=\{5,6,7,8\} \\
& \mathrm{A} \times \mathrm{C}=\{(1,5),(1,6),(\underline{2}, 5),(2,6)\} \\
& \mathrm{B} \times \mathrm{D}=\left\{\left(\underline{1,5),(1,6),(1,7),(1,8),} \begin{array}{rl}
(2,5),(2,6),(2,7),(2,8), \\
(3,5),(3,6),(3,7),(3,8), \\
(4,5),(4,6),(4,7),(4,8)\}
\end{array}\right.\right. \\
&(\mathrm{A} \times \mathrm{C}) \subset(\mathrm{B} \times \mathrm{D}) \quad \mathrm{It} \text { is proved. }
\end{aligned}
$$

8. If $f(x)=\frac{x-1}{x+1}, x \neq 1$ show that $f(f(x))=-\frac{1}{x}$, provided $\boldsymbol{x} \neq 0$.

$$
\begin{aligned}
f(x) & =\frac{x-1}{x+1}, x \neq 1 \\
f(f(x)) & =f\left(\frac{x-1}{x+1}\right)=\frac{\left(\frac{x-1}{x+1}\right)-1}{\left(\frac{x-1}{x+1}\right)+1} \\
& =\frac{x-1-x-1}{\frac{(x+1)}{x-1+x+1}}=\frac{-2}{2 x}=\frac{-1}{x}
\end{aligned}
$$

Hence it is proved.
9. The function f and g are defined by $f(x)=6 x+8$; $g(x)=\frac{x-2}{3}$.
(i) Calculate the value of $\operatorname{gg}\left(\frac{1}{2}\right)$
(ii) Write an expression for $g f(x)$ in its simplest form.

SOM.

$$
\begin{aligned}
& f(x)=6 x+8 \\
& g(x)=\frac{x-2}{3}
\end{aligned}
$$

(i) $\quad g g(x)=g(g(x))$

$$
\text { (i) } \begin{aligned}
g g(x) & =g(g(x)) \\
& =g\left(\frac{x-2}{3}\right)=\frac{\frac{x-2}{3}-2}{3} \\
& =\frac{x-2-6}{3} \times \frac{1}{3}=\frac{x-8}{9} \\
\operatorname{gog}\left(\frac{1}{2}\right) & =\frac{\frac{1}{2}-8}{9}=\frac{1-16}{2} \times \frac{1}{9}=\frac{-15}{18}=\frac{-5}{6}
\end{aligned}
$$

(ii) $g \circ f(x)=g(f(x))=g(6 x+8)$

$$
\begin{aligned}
& =\frac{6 x+8-2}{3}=\frac{6 x+6}{3} \\
& =\frac{\not p(2 x+2)}{\not p}=2 x+2=2(x+1)
\end{aligned}
$$

10. Write the domain of the following real functions
(i) $f(x)=\frac{2 x+1}{x-9}$
[PTA - 6]
(ii) $p(x)=\frac{-5}{4 x^{2}+1}$
(iii) $g(x)=\sqrt{x-2}$
[PTA - 6]

Sol.
(iv) $h(x)=x+{ }_{2}^{6}$
(i) $f(x)=\frac{2 x+1}{x-9}$

The denominator should not be zero as the function is a real function.
\therefore The domain $=\mathrm{R}-\{9\}$
(ii) $p(x)=\frac{-5}{4 x^{2}+1}$

The domain is R .
(iii) $g(x)=\sqrt{x-2}$

The domain $=[2, \propto]$
(iv) $h(x)=x+6$

The domain is R .

PTA EXAM QUESTION \& ANSWERS

1 MARK

1. If $n(A)=p, n(B)=q$ then the total number of relations that exist between A and B is [PTA -1]
(A) 2^{p}
(B) 2^{q}
(C) 2^{p+q}
(D) $2^{p q}$
[Ans. (D) $2^{p q}$]
2. Given $f(x)(-1)^{x}$ is a function from \mathbb{N} to \mathbb{Z}. Then the range of \boldsymbol{f} is
[PTA - 3]
(A) $\{1\}$
(B) \mathbb{N}
(C) $\{1,-1\}$
(D) \mathbb{Z}
[Ans. (C) $\{1,-1\}$]
3. The given diagram represents
(A) an onto function
(B) constant function
(C) an one-one function
(D) not a function

[Ans. (D) not a function]
Hint: 4 has no image

2 MARKS

1. A relation ' f ' is defined by $f(x)=x^{2}-2$ where, $x \in\{-2,-1,0,3\}$ (i) List the elements of f (ii) Is \boldsymbol{f} a function?
[PTA - 1; Qy - 2019]

$$
f(x)=x^{2}-2 \text { where } x \in\{-2,-1,0,3\}
$$

(i) $f(-2)=(-2)^{2}-2=2$;
$f(-1)=(-1) 2-2=-1$
$f(0) \quad=\quad 0^{2}-2=-2$
$f(3)=3^{2}-2=9-2=7$
$\therefore f=\{(-2,2),(-1,-1),(0,-2),(3,7)\}$
(ii) We note that each element in the domain of f has a unique image.
Therefore f is a function.
2. A relation R is given by the set $\left\{(x, y) / y=x^{2}+3\right.$, $x \in\{0,1,2,3,4,5\}\}$ Determine its domain and range.
[PTA - 2]
Sol.

$$
\begin{aligned}
\text { Domain } & =\{0,1,2,3,4,5\} \\
x & =0, y=0^{2}+3=3 \\
x & =1, y=1^{2}+3=4 \\
x & =2, y=2^{2}+3=7 \\
x & =3, y=3^{2}+3=12 \\
x & =4, y=4^{2}+3=19 \\
x & =5, y=5^{2}+3=28 \\
\text { Range } & =\{3,4,7,12,19,28\}
\end{aligned}
$$

3. Find k, if $f(k)=2 k-1$ and $f 0 f(k)=5$. [PTA - 4]

$$
f(k)=2 k-1
$$

Consider $f o f(k)=f(f(k))=f(2 k-1)$

$$
[\because f(x)=2 k-1]
$$

$$
\begin{aligned}
& =2(2 k-1)-1 \\
{[\operatorname{In} f(k)} & =2 k-1, \text { replace } k \text { by } 2 k-1] \\
& =4 k-2-1=4 k-3 \\
\Rightarrow \quad 4 k-3 & =5 \Rightarrow 4 k=5+3=8 \\
\Rightarrow \quad k & =\frac{8}{4}=2 \\
\therefore k & =2
\end{aligned}
$$

4. Let $A=\{1,2,3, \ldots, 100\}$ and R be the relation defined as "is cube of" on \mathbf{A}. Find the domain and range of R.
[PTA - 4]

$$
\begin{aligned}
\mathrm{R} & =\{(1,1)(2,8),(3,27),(4,64)\} \\
\text { Domain } & =\{1,2,3,4\} \\
\text { Range } & =\{1,8,27,64\}
\end{aligned}
$$

5. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\mathbb{N}$. Let $f: \mathrm{A} \rightarrow \mathrm{B}$ be defined by $f(x)=x^{2}$ (i) the range of f (ii) identify the type of function.
[PTA - 5]
Sol. $f(1)=1 ; f(2)=4 ; f(4)=9 ; f(4)=16$
(i) Range $=\{1,4,9,16\}$
(ii) One - one and into function
6. Let f be a function from \mathbb{R} to \mathbb{R} defined by $f(x)=3 x-5$ Find the values of a and b given that $(a, 4)$ and $(1, b)$ belong to f.
[PTA - 6]
Sol.

$$
\begin{aligned}
f(x) & =3 x-5 \text { can be written as } \\
f & =\{(x, 3 x-5) \mid x \in \mathbb{R}\}
\end{aligned}
$$

$(a, 4)$ mean the image of a is 4 .
That is, $\quad f(a)=4$

$$
3 a-5=4 \Rightarrow a=3
$$

$(1, b)$ means the image of 1 is b. That is,
That is, $f(1)=b \Rightarrow b=-2$

$$
3(1)-5=b \Rightarrow b=-2
$$

7. $\mathrm{R}=\{(x,-2),(-5, y)$ represents the identity function, find the values x and y.
[PTA - 6]
Sol.

$$
\begin{aligned}
& x=-2 \\
& y=-5
\end{aligned}
$$

5 MARKS

1. Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by $f(x)=3 x-1$ Represent this function. [PTA - 3]
(i) by arrow diagram
[Sep.-2020]
(ii) in a table form
(iii) as a set of ordered pairs
(iv) in a graphical form

Sol. Let $\mathrm{A}=\{1,2,3,4\} ; \mathrm{B}=\{2,5,8,11,14\}$;
$f(x)=3 x-1$
$f(1)=3(1)-1=3-1=2 ; f(2)=3(2)-1=6-1=5$
$f(3)=3(3)-1=9-1=8 ; f(4)=4(3)-1=12-1=11$
(i) Arrow diagram

Let us represent the function $f: \mathrm{A} \rightarrow \mathrm{B}$ by an arrow diagram

(ii) Table form

The given function f can be represented in a tabular form as given below

x	1	2	3	4
$f(x)$	2	5	8	11

(iii) Set of ordered pairs

The function f can be represented as a set of ordered pairs as
$f=(1,2),(2,5),(3,8),(4,11)$
(iv) Graphical form

In the adjacent $x y$-plane the points
$(1,2),(2,5),(3,8),(4,11)$ are plotted
2. Let $\mathrm{A}=\{x \in \mathbb{W} / 0<x<5\}, \mathrm{B}=\{x \in \mathbb{W} / 0 \leq x \leq 2\}$, $C=\{x \in \mathbb{W} / x<3\}$ then verify that $A \times(B \cap C)$ $=(A \times B) \cap(A \times C)$
[PTA - 3]

$$
\begin{align*}
\mathrm{A}= & \{1,2,3,4\} \\
\mathrm{B}= & \{0,1,2\} \\
\mathrm{C}= & \{0,1,2\} \\
\mathrm{B} \cap \mathrm{C}= & \{0,1,2\} \cap\{0,1,2\}=\{0,1,2\} \\
\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})= & \{1,2,3,4\} \times\{0,1,2\} \\
= & \{(1,0),(1,1),(1,2),(2,0),(2,1), \\
& (2,2),(3,0),(3,1),(3,2),(4,0), \\
& (4,1),(4,2)\} \tag{1}\\
\mathrm{A} \times \mathrm{B}= & \{1,2,3,4\} \times\{0,1,2\} \\
= & \{(1,0),(1,1),(1,2),(2,0),(2,1),(2,2), \\
& (3,0),(3,1),(3,2),(4,0),(4,1),(4,2)
\end{align*}
$$

$$
\begin{aligned}
\mathrm{A} \times \mathrm{C}= & \{1,2,3,4\} \times\{0,1,2\} \\
= & \{(1,0),(1,1),(1,2),(2,0),(2,1),(2,2), \\
& (3,0),(3,1),(3,2),(4,0),(4,1),(4,2) \\
(\mathrm{A} \times \mathrm{C})= & \{1,2,3,4\} \times\{0,1,2\} \\
= & \{(1,0),(1,1),(1,2),(2,0),(2,1),(2,2), \\
& (3,0),(3,1),(3,2),(4,0),(4,1),(4,2)
\end{aligned}
$$

$$
\begin{equation*}
(1)=(2) \quad \text { Hence it is proved. } \tag{2}
\end{equation*}
$$

3. $f(x)=2 x+3, g(x)=1-2 x$ and $h(x)=3 x$, prove that $f o(g o h)=(f o g) o h$.
[PTA - 5]
Soll

$$
\begin{aligned}
f(x) & =2 x+3, g(x)=1-2 x, \\
h(x) & =3 x
\end{aligned}
$$

Now, $(f \circ g)(x)=f(g(x))=f(1-2 x)$
$=2(1-2 x)+3=5-4 x$
Then,

$$
\begin{align*}
(f \circ g) \circ h(x) & =(f \circ g) h(x))=(f \circ g)(3 x) \\
& =5-4(3 x)=5-12 x \ldots \ldots(1) \tag{1}\\
(g \circ h)(x) & =g(h(x))=g(3 x)=1-2(3 x) \\
& =1-6 x
\end{align*}
$$

So,

$$
\begin{align*}
f o(\operatorname{goh})(x) & =f(1-6 x) \\
& =2(1-6 x)+3 \\
& =5-12 x \tag{2}
\end{align*}
$$

From (1) and (2), we get

$$
(f \circ g) o h=f o(g \circ h)
$$

GOVT. EXAM QUESTION \& ANSWERS

1 MARK

Multiple choice questions.

1. $f=\{(2, a),(3, b),(4, b),(5, c)\}$ is a \qquad .
[Govt. MQP - 2019]
(A) identity function
(B) one-one function
(C) many-one function
(D) constant function
[Ans. (C) many-one function]

Hint:

2. Let $f(x)=x^{2}-x$, then $f(x-1)-f(x+1)$ is :
[Sep.-2020]
(A) $4 x$
(B) $2-2 x($
(C) $2-4 x$
(D) $4 x-2$
[Ans. (C) $2-4 x$]

$$
\text { Hint: } \quad \begin{aligned}
\quad f(x-1) & =(x-1)^{2}-(x-1) \\
& =x^{2}-2 x+1-(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}-2 x+1-x+1 \\
& =x^{2}-3 x+2 \\
f(x+1) & =(x+1)^{2}-(x+1) \\
& =x^{2}+2 x+X-x-x \\
& =x^{2}+x \\
\therefore f(x-1)-f(x+1) & \\
& =\left(x^{2}-3 x+2\right)-\left(x^{2}+x\right) \\
& =\not x^{2}-3 x+2-\not x^{2}-x \\
& =-4 x^{2}+2
\end{aligned}
$$

3. If $n(\mathrm{~A})=p$ and $n(\mathrm{~B})=q$ then $n(\mathrm{~A} \times \mathrm{B})=$
[Qy-2019]
(A) $p+q$
(B) $p-q$ (C) $p \times q$
(D) $\frac{p}{q}$
[Ans. (C) $p \times q$]

Hint: $\quad n(\mathrm{~A} \times \mathrm{B})=n(\mathrm{~A}) \times n(\mathrm{~B})=p \times q$

2 MARKS

1. Define a function.
[Govt. MQP - 2019]
Sol. A relation f between two non-empty sets X and Y is called a function from X to Y if, for each $x \in \mathrm{X}$ there exists only one $y \in \mathrm{Y}$ such that $(x, y) \in f$.
That is, $f=\{(x, y) \mid$ for all $x \in \mathrm{X}, y \in \mathrm{Y}\}$
2. Let f be a function $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(x)=3 x+2, x \in \mathbb{N}$.
[Govt. MQP - 2019]
(i) Find the images of 1, 2, 3
(ii) Find the pre-images of 29,53
(iii) Identify the type of function

Soll $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $f(x)=3 x+2$,
(i) $\quad f(1)=3(1)+2=3+2=5$

$$
f(2)=3(2)+2=6+2=8
$$

$$
f(3)=3(3)+2=9+2=11
$$

The images of $1,2,3$ are $5,8,11$ respectively.
(ii) If x is the pre-image of 29 , then $f(x)=29$.

$$
\begin{array}{rlrl}
\Rightarrow & & 3 x+2 & =29 \\
& & 3 x & =27 \\
\Rightarrow & x & =9 .
\end{array}
$$

Similarly, if x is the pre-image of 53 , then $f(x)=53 . \Rightarrow 3 x+2=53$

		$3 x$	$=51$
$\Rightarrow \quad$	x	$=17$.	

\therefore the pre-images of 29 and 53 are 9 and 17 respectively.

