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1 Relations and 
Functions

FORMULAE TO REMEMBER

 � Vertical line test :

 A curve drawn in a graph represents a functions, if every vertical line intersects the curve in at 
most one point.

 � Horizontal line test :

 A function represented in a graph is one - one, if every horizontal line intersect the curve in at 
most one point.

 � Linear functions has applications in Cryptography as well as in several branches of Science and 
Technology.

[1]
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2  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

EXERCISE 1.1

1. Find A× B, A×A and B ×A
 (i)	 A	=	{2,−2,3}	and	B	={1,−4}	(ii)	A=	B	={p,q}	

(iii) A= {m,n}	;	B	=	ϕ   [PTA - 1]

Sol. (i)     A = {2, –2, 3}, B = {1, –4}
   A × B =  {(2, 1), (2, –4), (–2, 1), (–2, –4), 

 (3, 1), (3, –4)}
   A × A =  {(2, 2), (2, –2), (2, 3), (–2, 2), 

 (–2, –2), (–2, 3), (3, 2), (3, –2), 
 (3, 3)}

   B × A =  {(1, 2), (1, –2), (1, 3), (–4, 2),  
 (–4, –2), (–4, 3)}

 (ii) A = B = {(p,q)
   A × B = {(p, p), (p, q), (q, p), (q, q)}
   A × A = {(p, p), (p, q), (q, p), (q, q)} 
   B × A = {(p, p), (p, q), (q, p), (q, q)} 
 (iii) A = {m,n} , B = ϕ
   A × B = { }
   A × A = {(m,m), (m,n), (n, m), (n, n)}
   B × A =  {   }

2. Let	A	 =	 {1,	 2,	 3}	 and	B	 =	 {x | x is a prime 
number	less	than	10}.	Find	A×	B	and	B	×	A.

Sol.                A = {1, 2, 3}, B = {2, 3, 5, 7}
   A × B = { (1, 2), (1, 3), (1, 5), (1, 7), (2, 2), 

(2, 3), (2, 5), (2, 7), (3, 2), (3, 3), 
 (3, 5), (3, 7)}

   B × A = { (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), 
(3, 3), (5, 1), (5, 2), (5, 3), (7, 1), 
 (7, 2), (7, 3)}

3. If	 B	 ×A={(−2,	 3),(−2,	 4),(0,	 3),(0,	 4),(3,	 3), 
(3,	4)}	find	A	and	B.	 [Qy - 2019]

Sol. Given B × A = {(–2, 3), (–2, 4), (0, 3), (0, 4), (3, 3), 
 (3, 4)}

 Here B = { –2, 0, 3}
� [All�the�first�elements�of�the�order�pair]
 and A = {3, 4}
� [All�the�second�elements�of�the�order�pair]

4. If	A	={5,	6},	B	=	{4,	5,	6}	,	C	={5,	6,	7},	Show	
that A×A = (B × B)∩(C	×C).

Sol.                 A = {5, 6}, B = {4, 5, 6},C = {5, 6, 7}
   A × A = {(5, 5), (5, 6), (6, 5), (6, 6)} ...(1)
   B × B = {(4, 4), (4, 5), (4, 6), (5, 4), 

    (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}
 ...(2)

   C × C = {(5, 5), (5, 6), (5, 7), (6, 5), (6, 6), 
     (6, 7), (7, 5), (7, 6), (7, 7)} ...(3)
 (B × B) ∩ (C × C) = {(5, 5), (5, 6), (6, 5), (6, 6)}

 ...(4)
 (1) = (4) 
   A × A  = (B × B) ∩ (C × C). It is proved.

5. Given	A	={1,	2,	 3},	B	=	 {2,	 3,	 5},	C	=	 {3,	 4}	
and	D	=	{1,	3,	5},	check	if(A∩C)	×	(B∩D) = 
(A×B)∩(C	×	D)	is	true?	 [Qy - 2019]

Sol.           LHS = {(A ∩ C) × (B ∩ D)
   A ∩ C = {3}
   B ∩ D = {3, 5}
  (A ∩ C) × (B ∩ D) = {(3, 3) , (3, 5)} ...(1)
   RHS = (A × B) ∩ (C × D)
   A × B = { (1, 2), (1, 3), (1, 5), (2, 2), (2, 3),  

(2, 5), (3, 2), (3, 3), (3, 5)}
 C × D ={(3, 1), (3, 3), (3, 5), (4, 1), (4, 3), (4, 5)}
  (A × B) ∩ (C × D) = {(3, 3), (3, 5)} ...(2)
 \ (1) = (2) \ It is true.

6. Let A={x ∈W |x	<	2},	B	=	{x∈N	|1	<	x ≤ 4}	and	
C	=	{3,	5}	.	Verify	that

 (i) A × (B∪C)	=(A	×	B)∪(A	×	C)	 [PTA - 2]

 (ii) A×(B∩C)	=	(A	×	B)∩(A	×	C)	 [PTA - 5]

 (iii) (A∪B)	×	C	=	(A×C)∪(B	×	C)

(i) A × (B ∪	C)	 =	 (A	×	B)	∪	(A	×	C)
Sol.   A = {x ∈W |x < 2}= {0, 1}
Sol. � [Whole�numbers�less�than�2] 
   B = {x∈N |1 < x ≤ 4}={2, 3, 4}
   C = {3, 5}
Sol. � [Natural�numbers�from�2�to�4] 
   LHS = A × (B ∪ C)
   B ∪ C = {2, 3, 4} ∪ {3, 5}
    = {2, 3, 4, 5}
   A × (B ∪ C) = { (0, 2), (0, 3), (0, 4), (0, 5), 

(1, 2), (1, 3), (1, 4),(1, 5)}
 ...(1)

   RHS = (A × B) ∪(A × C)
   (A × B) = { (0, 2), (0, 3), (0, 4), (1, 2), 

(1, 3), (1, 4)}
   (A × C) = {(0, 3), (0, 5), (1, 3), (1,5)}
  (A × B) ∪ (A × C) = { (0, 2), (0, 3), (0, 4), (0, 5), 

(1, 2), (1, 3), (1, 4),(1, 5)}
 ...(2)

   (1) = (2), LHS = RHS Hence it is proved.
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3 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

(ii)	 	A	×	(B	–	C)	=	(A	×	B)	–	(A	×	C)
   LHS = A × (B – C)
   (B – C) = {3, 5, 7}
  A × (B – C) = { (1, 3), (1, 5), (1, 7), (2, 3), (2, 5),  

(2, 7), (3, 3), (3, 5), (3, 7), (4, 3),  
(4, 5), (4, 7), (5, 3), (5, 5), (5, 7),  
(6, 3), (6, 5), (6, 7), (7, 3), (7, 5),  
 (7, 7)}   ...(1)

   RHS = (A × B) – (A × C)
   (A × B) =  { (1, 2), (1, 3), (1, 5), (1, 7),  

(2, 2), (2, 3), (2, 5), (2, 7),  
(3, 2), (3, 3), (3, 5), (3, 7),  
(4, 2), (4, 3), (4, 5), (4, 7),  
(5, 2), (5, 3), (5, 5), (5, 7),  
(6, 2), (6, 3), (6, 5), (6, 7),  
(7, 2), (7, 3), (7, 5), (7,7)}

(A × C) = {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)}
(A × B) – (A × C) =  (1, 3), (1, 5), (1, 7), (2, 3), (2, 5), 

(2, 7), (3, 3), (3, 5), (3, 7), (4, 3), 
(4, 5), (4, 7), (5, 3), (5, 5), (5, 7), 
(6, 3), (6, 5), (6, 7), (7, 3), (7, 5),  
 (7, 7)}    ...(2)

  (1) = (2) ⇒�LHS�=�RHS.� Hence�it�is�verified.

EXERCISE 1.2

1. Let	A	=	{1,2,3,7}	and	B	=	{3,0,–1,7},	which	
of	the	following	are	relation	from	A	to	B	?

 (i) R1	=	{(2,1),	(7,1)}
 (ii) R2	=	{(–1,1)}
 (iii) R3	=	{(2,–1),	(7,7),	(1,3)}
 (iv) R4	=	{(7,–1),	(0,3),	(3,3),	(0,7)}
Sol. Given A = {1, 2, 3, 7} and B = {3, 0, –1, 7}
(i) R1 =  {(2, 1), (7, 1)} 
 2 and 7 cannot be related to 

1 since 1 ∉B
 \ R1 is not a relation.
(ii) R2 = {(–1, 1)}
  –1 cannot be related to 1 

since –1 Ï A and 1 Ï B
 \ R2 is not a relation.
(iii) R3 = {(2, –1), (7, 7), (1, 3)}

1

2

3

7

3

0

-1

7

A B

R3 is a relation since 
2 is related to –1, 7 is 
related to 7 and 1 is 
related to 3.

 (ii) A × (B  ∩	C)	 =	 (A	×	B)	 ∩	(A	×	C)
   LHS = A × (B  ∩ C)
   (B  ∩ C) = {3}
   A × (B  ∩ C) = {(0, 3), (1, 3)} ...(1)
   RHS = (A × B)  ∩ (A × C)
   (A × B) = {(0, 2), (0, 3),(0, 4), (1, 2), 
      (1, 3), (1, 4)}
   (A × C) = {(0, 3), (0, 5), (1, 3), (1,5)}
 (A × B)  ∩ (A × C) = {(0, 3), (1, 3)} ...(2)
   (1) = (2) ⇒ LHS = RHS.
� Hence�it�is�verified.
(iii) (A ∪	B)	×	C	=	(A	×	C)	∪	(B	×	C)
   LHS = (A ∪ B) × C
   A ∪ B = {0, 1, 2, 3, 4}
   (A ∪ B) × C = { (0, 3), (0, 5), (1, 3), (1, 5), 

(2, 3), (2, 5), (3, 3), (3, 5), 
 (4, 3), (4, 5)}  ...(1)

   RHS = (A × C) ∪ (B × C)
   (A × C) = { (0, 3), (0, 5), (1, 3), (1, 5)}
   (B × C) =  { (2, 3), (2, 5), (3, 3), (3, 5), 

 (4, 3), (4, 5)}
 (A × C) È (B × C) = { (0, 3), (0, 5), (1, 3), (1, 5),  

(2, 3), (2, 5), (3, 3), (3, 5),  
 (4, 3), (4, 5)}...(2)

  (1) = (2)
   \�LHS� =� RHS.�Hence�it�is�verified.

7. Let A = The set of all natural numbers less 
than 8, B = The set of all prime numbers less 
than	 8,	C	=	The	 set	 of	 even	 prime	number.	
Verify	that

 (i) (A∩	B)	×	C	=	(A	×	C)∩(B	×	C)	[Sep. - 2020] 
 (ii)	 A×	(B	−	C	)	=	(A	×	B)	−	(A	×	C)	 [PTA - 1]
  A = {1, 2, 3, 4, 5, 6, 7}
   B = {2, 3, 5, 7}
   C = {2}
 [ �2�is�the�only�even�prime�number]
Sol. (i) (A ∩	B)	×	C	=	(A	×	C)	∩	(B	×	C)
   LHS = (A ∩ B) × C
   A ∩ B = {2, 3, 5, 7}
  (A ∩ B) × C = {(2, 2), (3, 2), (5, 2), (7, 2)}

 ...(1)
   RHS = (A × C) ∩ (B × C)
   (A × C) = { (1, 2), (2, 2), (3, 2), (4, 2), (5, 2),  

 (6, 2), (7, 2)}
   (B × C) = {(2, 2), (3, 2), (5, 2), (7, 2)}
  (A × C) ∩ (B × C) = {(2, 2), (3, 2), (5, 2), (7, 2)}

 ...(2)
  (1) = (2)
  \�LHS�=�RHS.�Hence�it�is�verified.

1

2

3

7

A B

3

0

−1

7
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4  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

(iv) R4= {(7, –1), (0, 3), (3, 3), (0, 7)}

1

2

3

7

3

0

-1

7

A B 7 is related to –1
3 is related to 3
Since 0 Ï A, 0 cannot 
be related to 3 and 7.
\ R4 is not a relation.

2. Let	A={1,	2,	3,	4,...,45}	and	R	be	the	relation	
defined	as	 “is	 square	of	 ”	 on	A.	Write	R as 
a	subset	of	A	×	A.	Also,	find	the	domain	and	
range	of	R.

Sol. Given A ={1, 2, 3, 4, . . . 45}
 \ A × A = {(1, 1) (1, 2) (1,3) ... (1, 45)
    (2, 1) (2, 2) ... (2, 45) (45, 1) (45, 2) 

 (45, 3) ... (45, 45)}        ... (1)
� R�is�defined�as�“is�square�of�”
 \ R = {(1,1) (2,4) (3,9) (4,16) (5, 25) (6,36)}... (2)
 [�1�is�the�square�of�1,�2�is�the�
� square�of�4�and�so�on]
 From (1) and (2), R is the subset of A × A
 \R ⊂ A × A 
 Domain of R = {1, 2, 3, 4, 5, 6}
� [All�the�first�elements�of�the�order�pair�in�(2)]
 Range of R = {1, 4, 9, 16, 25, 36}
� [All�the�second�elements�of�the�order�pair�in�(2)]
3. A	Relation	R	is	given	by	the	set	{(x, y) /y = x +	3,	 

x ∈{0,	 1,	 2,	 3,	 4,	 5}}.	Determine	 its	 domain	
and	range.	 [PTA - 5]

Sol. Given R = {(x, y) /y = x + 3} and  
x ∈{0, 1, 2, 3, 4, 5}

  When x = 0, y = 0 + 3 = 3 [ y = x�+�3]
  When x = 1, y = 1 + 3 = 4
  When x = 2, y = 2 + 3 = 5
  When x = 3, y = 3 + 3 = 6
  When x = 4, y = 4 + 3 = 7
  When x = 5, y = 5 + 3 = 8
 \ R ={(0, 3),(1, 4),(2, 5),(3, 6),(4, 7), (5, 8)}
  \Domain of R = {0, 1, 2, 3, 4, 5}
� [All�the�first�element�in�R]�
   Range of R = {3, 4, 5, 6, 7, 8}
 [All the second element in R]
4. Represent	each	of	the	given	relation	by	(a)	an	

arrow	diagram,	 (b)	a	graph	and	 (c)	a	 set	 in	
roster	form,	wherever	possible.

 (i) {(x, y)|x = 2y, x ∈{2,	3,	4,	5},	y ∈ {1,	2,	3,	4}}

 (ii) {(x, y)|y = x	+	3,	x, y	are	natural	numbers	<	10}
Sol. (i) R = {(x, y)| x = 2y, x ∈ {2, 3, 4, 5} and  

 y ∈ {1, 2, 3, 4}}

 When x = 2, y = x
2

 = 2
2

 = 1

 [  x = 2y  ⇒ y = x
2
]

 When x = 3, y = 3
2

 When x = 4, y = 4
2

= 2

 When x = 5, y = 5
2

(a) 

2

3

4

5

an arrow diagram

1

2

3
4

3 cannot be related 

to 3
2

 and 5 cannot be 

related to 5
2

.

 (b) a graph
  

1

0x′ x

y

y′
−1

1 2 3 4 5

2

3

4

(2, 1)

(4, 2)

5

  (c) Roster form : R = {(2, 1), (4, 2)}
(ii) R = {(x, y)|y = x + 3, 
 x and y are natural numbers <10}
  x = {1, 2, 3, 4, 5, 6, 7, 8, 9
  y = {1, 2, 3, 4, 5, 6, 7, 8, 9}
 [ x and y�are�natural�numbers�less�than�10]
 Given y = x + 3
 When x = 1, y = 1 + 3 = 4
 When x = 2, y = 2 + 3 = 5
 When x = 3, y = 3 + 3 = 6
 When x = 4, y = 4 + 3 = 7
 When x = 5, y = 5 + 3 = 8
 When x = 6, y = 6 + 3 = 9
 When x = 7, y = 7 + 3 = 10
 When x = 8, y = 8 + 3 = 11
 When x = 9, y = 9 + 3 = 12
  R = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}

[10,11, 12 ∉y]
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5 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

(a) an arrow diagram

  1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

(b) a graph
  

1

0x′ x

y

y′
−1

1 2 3 4 5 6 7 8 9

2

3

4 (1, 4)

(2, 5)

(3, 6)

(4, 7)

(5, 8)

(6, 9)

5

6

7

8

9

(c) Roster form : 
 R = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}
5. A	company	has	four	categories	of	employees	

given	by	Assistants	(A),	Clerks	(C),	Managers	
(M)	 and	 an	 Executive	 Officer	 (E).	 The	
company	 provide	 `10,000,	 `25,000,	 `50,000	
and `1,00,000	 as	 salaries	 to	 the	 people	
who	work	 in	 the	 categories	A,	C,	M	 and	E	
respectively.	 If	 A1, A2, A3, A4 and A5	 were	
Assistants;	C1,	C2,	C3,C4	were	Clerks;	M1,	M2, 
M3	were	managers	and	E1,	E2	were	Executive	
officers	 and	 if	 the	 relation	R	 is	 defined	 by	
xRy,	where	x	is	the	salary	given	to	person	y, 
express	 the	 relation	 R	 through	 an	 ordered	
pair	and	an	arrow	diagram.

Sol.             A – Assistants → A1, A2, A3, A4, A5
   C – Clerks → C1, C2, C3, C4
   M – Managers → M1, M2, M3
� E�–�Executive�officer� → E1, E2
 xRy is defined as x is the salary for assistants is 

`10,000, clerks is `25,000, Manger is `50,000 
and for the executing officer `1,00,000.

(a) \R = {(10,000, A1), (10,000, A2), (10,000, A3), 
 (10,000, A4), (10,000, A5),

   (25,000, C1), (25,000, C2), (25,000,C3), 
 (25,000, C4)

   (50,000, M1), (50,000, M2), (50,000, M3), 
 (1,00,000, E1), (1,00,000, E2)}

(b) 

10000

25000

50000

100000

A
1

A
2

A
3

A
4

A
5

C
1

C
2

C
3

C
4

M
1

M
2

M
3

E
1

E
2

EXERCISE 1.3

1. Let f = {(x, y)|x, y ∈ N and y = 2x}	be	a	relation	
on N.	Find	the	domain,	co-domain	and	range.	
Is	this	relation	a	function?

Sol.  Given f = {(x, y) |x, y ∈ N and y = 2x}
 When x = 1, y = 2(1) = 2
 When x = 2, y = 2(2) = 4
 When x = 3, y = 2(3) = 6
 When x = 4, y = 2(4) = 8 and so on.
  R = {(1, 2), (2, 4), (3, 6), (4, 8), (5, 10),...}
 Domain of R = {1, 2, 3, 4,...},
 Range of R = {2, 4, 6, 8,...}

 

1

2

3

4
.
.
.

1

2

3
4

5

6

7

8
.
.
.

Since all the elements 
of domain are related 
to some elements of  
co-domain, this relation  
f is a function.

2. Let	X	=	 {3,	 4,	 6,	 8}.	Determine	whether	 the	
relation R ={(x, f(x)) |x ∈ X, f(x) = x2 +	1}	is	a	
function from X to N	?

Sol.    x = {3, 4, 6, 8}
   R = ((x, f (x))|x ∈ X, f (x) = x2 + 1}
  f (x) = x2 + 1 

3
4
6
8

1
2
.
.
.
10
17
37
65
.
.
.

X

N

  f(3) = 32 + 1 = 10
  f(4) = 42 + 1 = 17
  f(6) = 62 + 1 = 37
  f(8) = 82 + 1 = 65
  R = {(3, 10), (4, 17), (6, 37), (8, 65)}
  Yes, R is a function from X to N.
 Since all the elements of X are related to some 

elements of N.
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6  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

3. Given the function f : x → x2 −	5x + 6, evaluate
 (i) f(–1)	 (ii)	 f(2a)
 (iii) f (2)  (iv) f(x	−1)
 Give the function f : x → x2 – 5x + 6.
(i)    f (–1) = (–1)2 – 5(–1) + 6 = 1 + 5 + 6 = 12
(ii)   f (2a) = (2a)2 – 5(2a) + 6 = 4a2 – 10a + 6
(iii)   f (2) = 22 – 5(2) + 6 = 4 – 10 + 6 = 0
(iv)   f (x – 1) = (x – 1)2 – 5(x – 1) + 6
    = x2 – 2x + 1 – 5x + 5 + 6
    = x2 – 7x + 12
4. A	 graph	 representing	 the	 function	 f(x) is 

given	in	figure	it	is	clear	that	f	(9)	=	2.

 
0

10

9

8

7

6

5

4

3

2

1

   1   2   3  4    5  6   7   8   9 10

y
 =

 f (x
)

 (i)	 Find	the	following	values	of	the	function
   (a) f(0)		 (b)	f	(7)	 (c)	 f(2) (d) f (10)
	 (ii)	 For	what	value	of	x is f(x)	=	1?
	 (iii)	 	Describe	the	following	(i)	Domain	 

(ii)	Range.
	 (iv)	 What	is	the	image of 6 under f	?
Sol. (i) From the graph
 (a) f (0) = 9     (c) f (2) = 6

 (b) f (7) = 6  (d) f (10) = 0
 (ii)  At x = 9.5, f (x) = 1
 (iii) Domain = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
     = {x |0 ≤ x ≤ 10, x ∈ R}
    Range = {x|0 ≤ x ≤ 9, x ∈ R}
     = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 (iv)  The image of 6 under f is 5. Since when you 

draw a line at x = 6, it meets the graph at 5.
5. Let f (x) = 2x +	5.		If	x ≠ 0	then	find	 f x f

x
( + 2) (2)− .

Sol.  Given f (x) = 2x + 5, x�≠�0. f x f
x

( ) ( )+ −2 2

   f (x) = 2x + 5
 ⇒  f (x + 2) = 2(x + 2) + 5
    = 2x + 4 + 5 = 2x + 9
 ⇒  f (2) = 2(2) + 5 = 4 + 5 = 9

  \ f x f
x

( ) ( )+ −2 2  = 
2 9 9x

x
+ −

 =
2x
x

 = 2

6. A function f	is	defined	by	f(x) = 2x	–	3	

	 (i)		 find f f(0) + (1)
2

	 (ii)	 find	x such that f (x)	=	0.
	 (iii)	 find	x such that f(x) = x	.
	 (iv)	 find	x such that f(x) = f(1	−	x).
Sol.  Given f (x) = 2x – 3

 (i) 
f f( ) ( )0 1

2
+

   f (0) = 2(0) – 3 = –3
   f (1) = 2(1) – 3 = –1

 \ 
f f( ) ( )0 1

2
+

 = 
− −3 1

2
 = 

−4
2

 = –2

 (ii) f (x) = 0  ⇒ 2x – 3 = 0
   2x = 3

   x = 3
2

 (iii) f (x) = x ⇒2x – 3 = x ⇒ 2x – x = 3
   x = 3
 (iv) f (x) = f (1 – x)
    2x – 3 = 2 (1 – x) – 3
    2x – 3 = 2 – 2x – 3
     2x + 2x = 2 –3 + 3
      4x = 2

       x = 
2

4 2
 

   x = 
1
2

7. An	 open	 box	 is	 to	 be	 made	 from	 a	 square	
piece	of	material,	24	cm	on	a	side,	by	cutting	
equal	squares	 from	the	corners	and	turning	
up	the	sides	as	shown	in	figure.	Express	 the	
volume	V	of	the	box	as	a	function	of	x.

x

x

x
24–2x

24–2x

Sol.  Volume of the box = Volume of the cuboid 
    = l × b × h cu. units
   Here l = 24 – 2x
   b = 24 – 2x
   h = x
   \V = (24 – 2x) (24 – 2x) × x
    = (576 – 48x – 48x + 4x2)x
   V = 4x3 – 96x2 + 576x
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7 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

8. A function f	is	defined	by	f(x)	=	3	−	2x	.	Find	 
x such that f(x2)= (f(x))2.

Sol.    Given f (x) = 3 – 2x
 Also, it is given that f (x2) = [f (x)]2

   f (x2) = 3 – 2x2 [Replacing x by x2]
 ... (1)
   [f (x)]2 = (3 – 2x)2 = 9 – 12x + 4x2

 ... (2)
 [ (a– b)2 = a2 – 2ab + b2]
 From (1) and (2),
 ⇒ 9 – 12x + 4x2 = 3 – 2x2

 ⇒ 9 – 12x + 4x2– 3 – 2x2 = 0 1

–1 –1
–2 ⇒ 6x2 – 12x + 6 = 0

 Dividing by 6, we get x2 – 2x + 1 = 0
 On factorizing we get, (x – 1) (x –1) = 0
 ⇒ x = 1

9. A	 plane	 is	 flying	 at	 a	 speed	 of	 500	 km	 per	
hour.	Express	the	distance	d	travelled	by	the	
plane as function of time t	in	hours.

Sol.   Speed = 
distance covered

time taken
 ⇒ distance = Speed × time
 ⇒ d = 500 × t [ time = t�hrs]
 ⇒ d = 500 t

10. The data in the adjacent table depicts 
the	 length	 of	 a	 person	 forehand	 and	 their	
corresponding	 height.	 Based	 on	 this	 data,	
a	 student	 finds	 a	 relationship	 between	 the	
height	 (y)	 and	 the	 forehand	 length(x) as  
y = ax + b,	where	a, b	are	constants.	 [PTA - 4]

Length	‘x’ of  
forehand (in cm) Height	‘y’ (in inches)

35 56

45 65

50 69.5

55 74

	 (i)	 Check	if	this	relation	is	a	function.
 (ii) Find a and b.
	 (iii)	 	Find	 the	 height	 of	 a	 person	 whose	

forehand	length	is	40	cm.
	 (iv)	 	Find	the	length	of	forehand	of	a	person 

if	the	height	is	53.3	inches.

Sol. Given relation is  y = ax + b  ...(1)
 (i) The given ordered pairs are 
   R = { (35, 56) (45, 65) (50, 69.5) (55, 74)}

35

45

50

55

56

65

69.5

74

x y
Since all the elements 
of x are related to some 
elements of y, the given 
relation is a function.

 (ii)  Consider any two ordered pairs (35, 56) 
and (45, 65) 

   Substitute 
x     y

(35, 56)  in y = ax + b we get,

   56 = a (35) + b ... (1)

    Similarly substitute (45, 65) in y = ax + b, 
we get

   65 = a (45) + b  ...(2)
  (2) → 65 = 45a + b  ....(2)
  (1) → 56 = 35a + b ...(3)
 Substituting,   9 = 10a 

 ⇒  a = 
9

10
 = 0.9

 Substituting a = 0.9 in (1) we get
   56 = 35 (0.9) + b 

 ⇒  56 = 31.5 + b 
 ⇒  b = 56 – 31.5 = 24.5
   Since y = ax + b
   We get y = 0.9x + 24.5
 (iii)  When the length of the forehand x = 40 cm,
   y = 0.9 (40) + 24.5
 ⇒ y = 36 + 24.5 = 60.5 inches
 ∴ The� required� height� of� the� person� is� 60.5�

inches.
 (iv)   When the length of the forehand y = 53.3 

inches,
   53.3 = 0.9x + 24.5
 [ y = 0.9x�+�24.5]
 ⇒  53.3 – 24.5 = 0.9x ⇒ 28.8 = 0.9x

 ⇒ x = 
28 8
0 9

10
10

.
.

´
´ ⇒ x =288

9
= 32 cm

–        –      –
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8  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

EXERCISE 1.4

1. Determine	 whether	 the	 graph	 given	 below	
represent	 functions.	 Give	 reason	 for	 your	
answers	concerning	each	graph.

 (i)   (ii)  

(iii)  (iv)

Y

Y′

Y′ Y′

Y′

X′

X′ X′

X′XO

Y

XO

O

O

Y

X X

Y

Sol. 

 (i)   (ii)  

(iii)  (iv)

Y

Y′

Y′ Y′

Y′

X′

X′ X′

X′XO

Y

XO

O

O

Y

X X

Y

 (i)  It is not a function. The graph meets the 
vertical line at more than one points.

 (ii)  It is a function as the curve meets the 
vertical line at only one point.

 (iii)  It is not a function as it meets the vertical 
line at more than one points.

 (iv)  It is a function as it meets the vertical line 
at only one point.

2. Let f :A→	B	be	a	function	defined	by	f (x) = 
x
2
−1,	

where	A	={2,	4,	6,	10,	12},	B	=	{0,	1,	2,	4,	5,	9}.	

Represent	f	by	 [Govt. MQP - 2019]
 (i)	 set	of	ordered	pairs;	
	 (ii)	 a	table;	
	 (iii)	 an	arrow	diagram;
	 (iv)	 a	graph
Sol.  f : A → B 

 A = {2, 4, 6, 10, 12}, B = {0, 1, 2, 4, 5, 9}

     f (x) = 
x
2

1− ,   f (2)= 2
2

1−  = 0

     f (4) = 
4
2

1−  = 1  f (6) = 6
2

1−  = 2

   f (10) = 
10
2

1−  = 4  f (12) = 
12
2

1−  = 5

 (i) Set of ordered pairs
   ={(2, 0), (4, 1), (6, 2), (10, 4), (12, 5)}
 (ii) a table

x 2 4 6 10 12
f (x) 0 1 2 4 5

 (iii) an arrow diagram;

   

2

4

6

10

12

0

1

2

4

5

9

A Bf

 (iv) a graph

  

1

0
1

−1
−1

2

2

−2

−2

3

(2,0)

(4,1)

(6,2)

(10,4)

(12,5)

3

4

4

5

5

6

  6 7 8 9 10 11 12 13

x′ x

y

y′

3. Represent	the	function	f	={(1,	2),(2,	2),(3,	2),	
(4,	3),	(5,	4)}	through	

 (i)	 an	arrow	diagram	
 (ii) a table form 
	 (iii)	 a	graph
Sol. f = {(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)}

 (i)  An arrow diagram.

1

2

3

4

5

2

3

4

f
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9 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

 (ii) a table form

x 1 2 3 4 5
f (x) 2 2 2 3 4

 (iii) A graph representation.

 

1

1 2 3 4 5 60
−1

−1

2

−2

−2

3

4

5

6

x′ x

y

y′

(1, 2)

(2, 2)
(3, 2)

(4, 3)

(5, 4)

4. Show	that	the	function	f : N → N	defined	by	 
f (x) = 2x	–	1	is	one	-	one	but	not	onto.

Sol.   f : N → N
   f (x) = 2x – 1
   N = {1, 2, 3, 4, 5,...}
   f (1) = 2(1) – 1 = 1
   f (2) = 2(2) – 1 = 3
   f (3) = 2(3) – 1 = 5
   f (4) = 2(4) – 1 = 7
   f (5) = 2(5) – 1 = 9

 
1

2

3

4

5

1

3

5

7

9

N(x) N(f (x))f

..
....

  In� the� figure,� for�
different elements 
in x, there are 
different images in 
f (x).

 Hence f : N → N is a one-one function.
 A function f : N → N is said to be onto function 

if the range of f�is�equal�to�the�co-domain�of�f.
 Range = {1, 3, 5, 7, 9, ...} 
 Co-domain = {1, 2,3,..}
� But� here� the� range� is� not� equal� to� co-domain.�

Therefore it is one-one but not onto function.

5. Show	that	the	function		f : N → N	defined	by 
 f (m) = m2 + m 	+	3		is	one	-	one	function.

Sol.  f : N → N
   f (m) = m2 + m + 3

   N = {1, 2, 3, 4, 5, . . .}, m ∈ N

   f (m) = m2 + m + 3

   f (1) = 12 + 1 + 3 = 5

   f (2) = 22 + 2 + 3 = 9

   f (3) = 32 + 3 + 3 = 15

   f (4) = 42 + 4 + 3 = 23

1

2

3

4

5

9

15

23

N N
fX f (x)

� �In� the�figure,� for� different� elements� in� the� (X)�
domain, there are different images in f (x). Hence 
f : N → N is a one to one but not onto function as 
the range of f�is�not�equal�to�co-domain.�

 Co-domain = N
 Range = {5, 9, 15, 23}
 Hence it is proved.
6. Let	A	={1,	2,	3,	4}	and	B	=	N.	Let	f : A→ B be 

defined	by	f(x) = x3 then, [Hy - 2019]
 (i)	 find	the	range	of	f 
	 (ii)	 identify	the	type	of	function
Sol.         A = {1, 2, 3, 4}

   B = N

  f : A → B, f (x) = x3

 (i) f (1) = 13 = 1

   f (2) = 23 = 8

   f (3) = 33 = 27

   f (4) = 43 = 64

 (ii)  The range of f = {1, 8, 27, 64,....}
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10  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

 (iii) 

1
2
3
4
5
6
7
8...
27...
64...

1

2

3

4

N

A

   Here co-domain = N = {1, 2, 3 ...}
   Range = {1, 8, 27, 64}
    Different elements have different images 

and co-domain ≠  Range.
    \The given function is one - one into 

function.

7. In	each	of	 the	 following	cases	 state	whether	
the	 function	 is	bijective	or	not.	 Justify	your	
answer.

 (i) f : R → R	defined	by	f(x) = 2x +	1
 (ii) f : R → R	defined	by	f(x)	=	3	–	4x2

Sol. Given  f : R → R is�defined�by�f (x) = 2x + 1
   (i) When x = 1,
   f (1) = 2(1) + 1 = 3
     f (2) = 2(2) + 1 = 5
     f (0) = 2(0) + 1 = 1
   f (–1) = 2(–1) + 1 = –2 + 1 = – 1

     f 
1
2

æ
è
ç

ö
ø
÷  = 2 

1
2

æ
è
ç

ö
ø
÷  + 1 = 1 + 1 = 2 and so on

12

.

.

-4

-3

-2

-1

0

1

2

3
.
.
.

.

.

-1

0

1

2

3

4
.
.
.

R R

1

2

Here, different 
element in domain 
have different 
images in B and 
Co-domain
= Range = R.
\ f is a bijective 
function.

 (ii)  Given f : R → R�is�defined�by�f (x) = 3 – 4x2

   f (1) = 3 – 4(12) = 3 – 4 (1)
    = 3 – 4 = –1
   f (2) = 3 – 4(22) = 3 – 4 (4)
    = 3 – 16 = –13
   f (0) = 3 – 4(0)2 = 3 – 0 = 3
     f (–1) = 3 – 4(–1)2 = 3 – 4(1)
    = 3 – 4 = –1

12

.

.

-13
.
.

-1

0
1

2

3
.
.
.

.

.

-1

0

1

2
.
.
.

R R

Here, different 
element in domain 
do not have 
different images in 
B. Since 1 and –1 
are related to –1.
\ f is not one - one.
Hence, f is not a 
bijective function.

8. Let	A	=	{−1,	1}and	B	={0,	2}.	If	the	function	
f :A →	B	defined	by	f(x) = ax + b is an onto 
function?	Find	a and b.

Sol. Given A = {–1, 1}, B = {0, 2} and f : A → B is 
defined��by�f (x) = ax + b is an onto function.

   

−1

  1

0

2

A B

   f (–1) = 0
 ⇒ a(–1) + b = 0 [ Sub x = –1, y = 0
 in y = ax + b]
 ⇒  – a + b = 0 ... (1)
   Also f (1) = 2
 ⇒ a(1) + b = 2  [ Sub x = 1, y = 2
 in y = ax + b]
 ⇒  a  + b = 2  ...(2)
 (1) ⇒ – a  + b = 0
 Adding, 2b = 2

 ⇒ b = 
2
2

= 1

 Substituting b = 1 in (2) we get
    a + 1 = 2 ⇒ a = 2 – 1 = 1
   ∴ a = 1, b = 1
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11 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

9. If the function f	is	defined	by	 

f (x) = 
x x

x
x x

+ 2 1
2 1 1

1 3 1

;
;
;

>
− ≤ ≤

− − < < −









	find	the	values	of

 (i) f(3)			 (ii)	 f(0)	
 (iii) f(−1.5)		 (iv)	 f (2) + f(−2)
Sol. (i) f (3) ⇒ f (x) = x + 2 ⇒ 3 + 2 = 5 [ x�=�3]
 (ii) f (0) ⇒ 2  [ 0 ∈– 1≤ x ≤1]
 (iii) f (–1.5)  = x – 1= –1.5 – 1 = –2.5
 (iv) f (2) + f (–2)
   f (2) = 2 + 2 = 4  [ f(x) = x�+�2]
   f (–2) = –2 – 1 = –3  [ f(x) = x�–�1]
   f (2) + f (–2) = 4 – 3 = 1

10. A function f	:	[−5,	9]→ R	is	defined	as	follows:

 f (x) = 

6 +1 5 2

5 1 2 6
3 4 6 9

2

x x

x x
x x

;

;
;

− ≤ <

− ≤ <
− ≤ ≤









 Find (i) f(−3)	+	f(2)  (ii) f (7)	–	f(1)	[PTA - 4]

 (iii) 2f(4)	+	f(8)  (iv) 2 2 6
4 2

f f
f f

( ) ( )
( ) ( )

− −
+ −

[PTA- 4]

Sol.  f�:�[–5,�9]�→ R
 (i) f(−3)	+	f(2)
   f (–3) = 6x + 1= 6(–3) + 1 = –17
     f (2) = 5x2 – 1 = 5(22) – 1 = 19
   \ f (–3) + f (2) = –17 + 19 = 2
 (ii) f (7)	–	f(1)	
   f (7) = 3x – 4 = 3(7) – 4 = 17
   f (1) = 6x + 1 = 6(1) + 1 = 7
   f (7) – f (1) = 17 – 7 = 10
 (iii)  2f (4)	+	f (8)
   f (4) = 5x2 – 1 = 5 × 42 – 1 = 79
   f (8) = 3x – 4 = 3 × 8 – 4 = 20
   \ 2f (4) + f (8) = 2 × 79 + 20 = 178
 

(iv) 2 2 6
4 2

f f
f f

( ) ( )
( ) ( )

− −
+ −

   f (–2) = 6x + 1 = 6(–2) + 1 = –11
   f (6) = 3x – 4 = 3(6) – 4 = 14
   f (4) = 5x2 – 1 = 5(42) – 1 = 79
   f (–2) = 6x + 1 = 6(–2) + 1 = –11

   
2 2 6

4 2
f f

f f
( ) ( )

( ) ( )
− −

+ −
 = 

2 11 14
79 11
( )

( )
− −

+ −
 = − −22 14

68

    = 
−36
68

 = 
−9
17

11. The	 distance	 S	 an	 object	 travels	 under	 the	
influence	of	gravity	in	time t	seconds	is	given	by	

S(t) = 
1
2

gt 2+ at + b	where,	(g is the acceleration 

due	to	gravity),	a, b	are	constants.	Verify	whether	
the	function	S	(t)is	one-one	or	not.	 [PTA - 3]

Sol.    S(t) = 
1
2

gt2 + at + b
  Let t be 1, 2, 3, . . ., seconds.

   S(1) = 
1
2 g(12) + a(1) + b= 

1
2

g + a + b

   S(2) = 
1
2

g(22) + a(2) + b

    = 2g + 2a + b
 Yes, for every different values of t, there will 

be different values as images. And there will be 
different pre-images for the different values of 
the range. Therefore it is one-one function.

12. The function ‘t’	which	maps	temperature	 in	
Celsius	 (C)	 into	 temperature	 in	 Fahrenheit	
(F)	is	defined	by	t(C)=	F	where	F	=	

9
5
C	+32.	

Find,
 (i) t(0)	 	 [PTA - 1]
 (ii) t(28) 
 (iii) t(–10)
 (iv)	 the	value	of	C	when	t(C)	=	212	 [PTA - 1]
 (v)	 	the	temperature	when	the	Celsius	value	

is	equal	to	the	Fahrenheit	value.	 [PTA - 1]
Sol. (i)        t(0) = F

      F = 
9
5

(C)+ 32 = 
9
5 (0) + 32 = 32°F

 (ii) t(28) = F = 9
5

(28) + 32 = 
252
5

 + 32

    = 50.4 + 32 = 82.4°F

 (iii) t(–10) = F = 
9
5

(–10) + 32 = 14°F

 (iv) t(C) = 212

   i.e
9
5

(C) + 32 = 212 ⇒ 
9
5

 C = 212 – 32 = 180

   
9
5

C = 180 ⇒ C = 
180 5

9

20
´

 = 100°C

   C = 100°C.
 (v)      when C = F

   
9
5

C + 32 = C

   32 = C – 
9
5

 C

   32 = C 1 9
5

-æ
è
ç

ö
ø
÷
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12  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

   32 = C
5 9

5
-æ

è
ç

ö
ø
÷

   32 = C -æ
è
ç

ö
ø
÷

4
5

   C = 32 5
4

8
´

-

   C = – 40°

EXERCISE 1.5

1. Using	the	functions	f and g	given	below,	find	
fog and gof	.	Check	whether	fog = gof .

 (i) f(x) = x −	6,	g(x) = x2

 (ii) f (x) = 
2
x

, g(x) = 2x2 −	1

 (iii) f (x) = 
x + 6

3
, g(x)	=	3	−	x

 (iv) f(x)	=	3	+	x, g(x) = x −	4	 [Govt. MQP - 2019]

 (v) f(x)	=	4x2 −	1,	g(x)	=	1	+	x
Sol. (i)   Given f(x) = x	−	6, g(x) = x2

   fog(x) = f(g(x)) = f(x2) [ g (x) = x2]
    = x2 – 6
   [In f(x) = x – 6, Replace x by x2]���...(1)
   gof (x) = g(f(x)) = g(x – 6) 
 [ f (x) = x�–�6]�

   = (x – 6)2

 [In g(x) = x2, Replace x by x�–�6]�
    = x2 – 12x + 36
 [ (a – b)2 = a2 – 2ab + b2]���...�(2)
   From (1) and (2), 
   fog(x) ≠ gof (x)

(ii)   Given f (x) = 2
x

, g(x) = 2x2 −�1

   fog(x) = f (g(x)) = f (2x2 – 1) 
 [ g (x) = 2x2�–�1]
    = 2

2 12x −

 [In f (x) = 
2
x

. Replace x by 2x2�–�1]��...(1)

   gof(x) = g(f(x)) = g
2
x





  [ f (x) =

2
x ]

    = 2 2 1
2

x






−

 [In g(x) = 2x2 – 1, Replace x by  
2
x
]

  
  = 2 4 12x







− = 
8 12x

−  ...(2)

   From (1) and (2), 
   fog(x) ≠ gof (x)

(iii)   Given f (x) = x + 6
3

, g(x)�=�3�− x

   fog(x) = f(g(x)) = f(3 – x) [ g (x) = 3 – x]

    = 3 6
3

− +x

 [In f(x) = x + 6
3

, Replace x by 3 – x]

    = 9
3
− x  ...(1)

   gof (x) = g(f(x)) = g x +





6
3

 
[ f(x) = x + 6

3
]

    = 3 – x +





6
3

 [In g(x) = 3 – x, Replace x by x + 6
3

]

    = 
9 6

3
- -x

 = 
3

3
− x

 ...(2)

   From (1) and (2), 
   fog(x) ≠ gof (x) 
(iv)   Given f(x) = 3 + x, g(x) = x −�4
   fog(x) = f (g(x)) = f (x – 4) [ g (x) = x�–�4]
    = 3 + (x – 4)
 [In f(x) = 3 + x, Replace x by x�–�4]
    = 3 + x – 4 = x – 1 ... (1)
   gof(x) = g (f(x)) = g (3 + x) 
    = 3 + x – 4 [ f (x) = 3 + x]
 [In g(x) = x – 4, Replace x by 3 + x]
    = x – 1 ...(2)
 From (1) and (2),
   fog(x) = gof(x)
(v)   Given  f(x) = 4x2 −�1, g(x) = 1 + x
   fog(x) = f (g(x)) = f (1 + x) [ g (x) =1 +  x]
    = 4(1 + x)2 – 1
 [In f(x) = 4x2 – 1, Replace x by 1 + x]
    = 4(1 + x2 + 2x) – 1= 4 + 4x2 + 8x – 1
    = 4x2 + 8x + 3 ...(1)
   gof(x) = g (f(x)) = g (4x2 – 1)
 [ f (x) = 4x2�–�1]
    = 1 + 4x2 – 1 
 [In g(x) = 1 + x, Replace x by 4x2�–�1]
    = 4x2 ...(2)
 From (1) and (2),
   fog(x) ≠ gof (x)
2. Find the value of k, such that fog = gof
 (i) f(x)	=	3x +	2,	g(x) = 6x −	k [Hy - 2019]

 (ii) f(x) = 2x −	k, g(x)	=	4x + 5
Sol. (i) Given f(x) = 3x + 2, g(x) = 6x – k and 
   fog = gof
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13 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

   fog(x) = f(g(x)) = f(6x – k)
 [ g (x) = 6x – k]
    = 3(6x – k) + 2
 [In f(x) = 3x + 2, Replace x by 6x – k]
    = 18x – 3k + 2 ...(1)
  Now gof (x) = g(f(x)) = g(3x + 2)
 [ f (x) = 3x�+�2]
    = 6(3x + 2) – k
 [In g(x) = 6x – k, Replace x by 3x�+�2]
    = 18x + 12 – k ...(2)
 Also it is given that fog = gof
⇒ 18 3 2x k− +  = 18 12x k+ −
� [Using�(1)�and�(2)]
⇒   –3k + 2 = 12 – k
⇒   –3k + k = 12 – 2
⇒   –2k = 12 – 2
⇒   –2k = 10 ⇒ k = 

10
2-

= –5
   \ k = –5
 (ii) f (x) = 2x – k, g(x) = 4x + 5
   fog(x) = f(g(x)) = f(4x + 5)
 [ g (x) = 4x�+�5]
    = 2(4x + 5) – k
 [ In f(x) = 2x – k, Replace x by 4x�+�5]
    = 8x + 10 – k ...(1)
   gof (x) = g(f(x)) = g(2x – k)
 [ f (x) = 2x – k]
    = 4(2x – k) + 5
 [In g(x) = 4x + 5, Replace x by 2x –k]
    = 8x – 4k + 5 ...(2)
  Given that 
   fog(x) = gof(x)
 ⇒ 8 10x k+ −  = 8 4 5x k− +
� [From�(1)�and�(2)]
 ⇒ 10 – k = –4k + 5 ⇒ –k + 4k = 5 – 10

 ⇒ 3k = –5  ⇒  k = −5
3

3. If f(x) = 2x −	 1,	 g(x) = 
x + 1

2
,	 show	 that	 

fog = gof = x.

Sol. Given f (x) = 2x – 1, g(x) = 
x +1

2
   S.T fog = gof = x   

fog(x) = f (g(x))= f x +





1
2

 [ g (x) = 
x +1

2
]

    = 2 1
2

1x +





−

 [ In f(x) = 2x – 1, Replace x by  
x +1

2
]

    = x + 1 – 1 = x ...(1)
 Now,
   gof(x) = g (f(x)) = g(2x – 1)
 [ f (x) = 2x�–�1]

    = 
2 1 1

2
x - +

 [In g(x) =  
x +1

2
, Replace x by 2x�–�1]

    = 
2
2
x

 = x ...(2)

 From (1) and (2)
   fog (x) = gof (x) = x Hence proved.

4. If f (x) = x2 −	 1,	 g(x) = x −	 2	 find	 a, if  
gof(a)	=	1.	 [PTA - 2]

Sol. Given  f (x) = x2 – 1, g(x) = x – 2
   gof (x) = g(f(x)) = g (x2 – 1)
 [ f (x) = x2�–�1]
    = x2 – 1 – 2
 [ In g(x) = x – 2, Replace x by x2�–�1]
    = x2 – 3
   \gof(a) = a2 – 3  [Replacing x by a]
 Given that gof (a) = 1
 ⇒  a2 – 3 = 1 ⇒ a2 = 4
 ⇒  a = ± 4  ⇒ a = ± 2
5. Let	A,B,C	⊆ N and a function f : A→ B be 

defined	by	 f(x) = 2x +	 1	 and	g : B → C	be	
defined	by	g(x) = x2.	Find	the	range	of	fog and 
gof.

Sol.    Given f(x) = 2x + 1 and
   g(x) = x2

   fog(x) = f(g(x)) = f(x2)  [ g (x) = x2]
    = 2x2 + 1 
 [In f (x) = 2x + 1, replace x by x2]
   \ fog (x) = 2x2 + 1 ... (1)
   gof(x) = g(f(x)) = g(2x + 1)
 [ f (x) = 2x�+�1]
    = (2x + 1)2

 [In g(x) = x2, replace x by 2x�+�1]
 [ (a + b)2 = a2 + 2ab + b2]
 Now f : A → B, and g : B → C
 \ fog : C → A and A, B, C ⊆ N
 \ Range of fog is
   {y/y = 2x2 + 1, x ∈ C} and 
 Range of gof is
   {y/y = (2x + 1)2, x ∈N} [ gof : A → C]
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14  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

6. If f (x) = x2 −	1	.	Find	(i)	fof, (ii) fofof
Sol. (i)  fof
   fof (x) = f (f(x)) = f(x2 – 1)
 [ f (x) = x2�–�1]
    = (x2 – 1)2 – 1 
 [In f(x) = x2–1, replace x by x2 – 1]
    = x4 – 2x2 + 1  – 1  
 [ (a – b)2 = a2 – 2ab + b2 Here a = x2, b�=�1]
   fof (x) = x4 – 2x2 ... (1)
 (ii)  fofof = fo[fof (x)]�
    = f o [x4 – 2x2]� [Using�(1)]
    = f(x4 – 2x2)
    = (x4 –2x2)2 – 1
 [In f(x) = x2–1, replace x by x4 – 2x2]
  \ fofof (x) = x8 – 4x6 + 4x4 – 1
 [ (a – b)2 = a2 – 2ab + b2 Here a = x4, b = –2x2]
7. If f : R → R and g : R → R	are	defined	by	 

f(x) = x5 and g(x) = x4	 then	check	 if	f, g are 
one-one	and	fog	is	one-one?	 [PTA - 6]

Sol.  Given f (x) = x5

   g(x) = x4

    fog (x) = f(g(x)) = f (x4)  [ g (x) = x4]
    = (x4)5 [In f(x) = x5, replace x by x4]
    = x20

    \ fog (x) = x20

  Now, fog (1) = 120 = 1
 and fog (–1) = (–1)20 = 1[ 20�is�an�even�number]
 \ Two elements 1 and –1 have same image as 1.
         \ fog (x) is not one-one.

8. Consider	the	functions	f(x),	g(x), h(x)	as	given	
below.	 Show	 that	 (fog)oh = fo(goh) in each 
case.

 (i) f(x) = x −1,	g(x)	=	3x +	1	and	h(x) = x2

 (ii) f(x) = x2, g(x) = 2x and h(x) = x +	4
 (iii) f(x) = x −	4,	g(x) = x2 and h(x)	=	3x −	5
 [PTA - 2]

(i)  Given f(x) = x −1,�g(x) = 3x + 1 and h(x) = x2 

Sol.  Consider f og(x) = f(g(x)) = f (3x + 1)
 [ g (x) = 3x�+�1]
    = 3x + 1  – 1
 [In f (x) = x – 1, replace x by 3x�+�1]
   \ fog = 3x
   LHS = (fog)h = fog (h(x))
    = fog (x2) [ h (x) = x2]
    = 3x2 [In fog = 3x, replace x by x2]
    RHS = fo(goh) = f (g (h(x))

    = f (g(x2)) [ h (x) = x2]
    = f(3x2 + 1)
 [In g(x) = x – 1, replace x by x2]
    = 3x + 1  – 1
 [In f(x) = 3x + 1, replace x by 3x2�+�1]
    = 3x2 ... (2).

   \ LHS = RHS
� [From�(1)�and�(2)]� � Hence�proved.
(ii) Given f(x) = x2, g(x) = 2x, h(x) = x + 4
 Consider fog(x) = f(g(x)) = f(2x) [ g (x) = 2x]
    = (2x2) [In f(x) = x2, replace x by 2x]
    = 4x2

 LHS (fog)oh = fog (h (x))
    = fog  (x + 4) [ h (x) = x�+�4]
    = 4(x + 4)2 
 [In fog = 4x2, replace x by x�+�4]
    = 4(x2 + 8x + 16)
 [ (a + b)2 = a2 + 2ab + b2. Here a = x, b�=�4]
    = 4x2 + 32x + 64 ... (1)
   RHS = fo (goh) = f (g (h(x))
    = f (g (x + 4))  [ h (x) = x�+�4]
    = f (2 (x + 4))
 [In g (x) = 2x, replace x by x�+�4]
    = f (2x + 8)  = (2x + 8)2

 [In f(x) = x2, replace x by 2x�+�8]
    = 4x2 + 32x + 64 ...(2)
 [ (a + b)2 = a2 + 2ab + b2. Here a = 2x, b�=�8]
   LHS = RHS
 From (1) and (2)  Hence proved.
(iii) f (x) = x – 4, g(x) = x2, h(x) = 3x – 5
 Consider
   fog(x) = f(g(x)) = f (x2) [ g (x) = x 2]
    = x2 – 4
 [In f(x) = x – 4, replace x by x2]
   LHS = (fog)oh
    = (fog)(h (x))= fog (3x – 5)
 [ h(x) = 3x�–5]
    = (3x – 5)2 – 4
 [In fog (x) = x2 – 4, replace x by 3x�–�5]
    = 9x2 – 30x + 25 – 4
 [ (a – b)2 =a2 – 2ab + b2 Here a = 3x, b�=�5]�
    = 9x2 – 30x + 21 ...(1)
   RHS = fo(goh) (x) = f (g (h (x))
    = f (g (3x – 5)  [ h(x) = 3x�–5]
    = f (3x – 5)2 
 [In g (x) = x2, replace x by 3x�–�5]
    = (3x – 5)2 – 4
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15 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

 [In f (x) = x – 4, replace x by 3x�–�5]
    = 9x2 – 30x + 25 – 4
 [ (a – b)2 =a2 – 2ab + b2 Here a = 3x, b�=�5]
    = 9x2 – 30x + 21 ...(2)
 From (1) and (2)
   LHS = RHS Hence proved.
9. Let f	 ={(−1,	 3),(0,	 −1),(2,	 −9)}	 be	 a	 linear	

function from Z into Z	.	Find	f(x).
Sol. Given f = {(–1, 3), (0, –1), (2, –9)} is a linear 

function from Z into Z.
 Since f is a linear function, let y = ax + b be the 

linear function which is of degree one.
 Sub (–1, 3) in y = ax + b, we get
    3 = a (–1) + b ⇒ – a + b = 3 ... (1)
 Sub (0, –1) in y = ax + b, we get
   –1 = a (0) + b ⇒ – 1 = b  ⇒ b = –1
 Sub b = –1 in (1) we get,
   –a – 1 = 3 ⇒ – a = 3 + 1 = 4
 ⇒ a = –4
 Sub a = –4, b = –1 in y = ax + b we get,
   y = –4x – 1
 \ The�required�linear�function�is�–�4x – 1.

10. In	 electrical	 circuit	 theory,	 a	 circuit	 C(t) 
is	 called	 a	 linear	 circuit	 if	 it	 satisfies	 the	
superposition	principle	given	by	C(at1	+ bt2) 
= aC(t1) + bC(t2)	 ,	 where	 a,b	 are	 constants.	
Show	that	the	circuit	C(t)	=	3t	is	linear.

Sol.  Given C(at1 + bt2) = a.c (t1) + b.c (t2) 
 Let C(t) = 3t
 LHS = C (at1 + bt2) = 3 (at1 + bt2)
  = 3at1 + 3bt2 ... (1)
 RHS = a.c(t1) + b.c (t2) = a.3t1 + b.3t2
 [ c(t1) = 3t1 and c(t2) = 3t2]
  = 3at1 + 3bt2 ... (2)
   LHS = RHS
 From (1) and (2)
  Hence C(t) = 3t  is linear function.

EXERCISE 1.6

Multiple choice questions.

1. If n(A×	B)	=	6	and	A	=	{1,	3}	then	n(B) is
 (A) 1 (B) 2 (C) 3 (D) 6
 [Ans.	(C)	 3]
Hint:    If n(A × B) = 6

   A = {1, 1}, n(A) = 2
   n(B) = 3

2. A={a, b, p},	B	=	 {2,	 3},	C	=	 {p, q, r, s}	 then	
n[(A∪C)	×	B]	is	 [PTA - 3]

 (A) 8  (B) 20  (C) 12 (D) 16
 [Ans. (C)	 12]
Hint:   A = {a, b, p}, B = {2, 3}, 

 C = {p, q, r, s}
 n (A ∪ C) × B
 A ∪ C = {a, b, p, q, r, s}
 (A ∪ C) × B = { (a, 2), (a, 3), (b, 2), (b, 3), (p, 2),  

(p, 3), (q, 2), (q, 3), (r, 2), (r, 3),  
 (s, 2), (s, 3}

 n [(A ∪ C)�×�B]� =�12

3. If	A	=	{1,	2},	B	=	{1,	2,	3,	4},	C	=	{5,	6}	and	 
D	=	{5,	6,	7,	8}	then	state	which	of	the	following	
statement	is	true.	 [Sep.- 2020]

 (A) (A × C) ⊂ (B × D)
 (B) (B × D) ⊂ (A × C)
 (C) (A × B) ⊂ (A × D) 
 (D) (D × A) ⊂ (B × A)
 [Ans. (A)	 (A	×	C)	⊂	(B	×	D)]
Hint:   A = {1, 2}, B = {1, 2, 3, 4}, 

   C = {5, 6}, D = {5, 6, 7, 8}
   A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}
   B × D = { (1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6),  

(2, 7), (2, 8), (3, 5), (3, 6), (3, 7), 
(3, 8)}

 \ (A × C) ⊂ B × D  It is true.
4. If	 there	 are	 1024	 relations	 from	 a	 set	 

A	=	{1,	2,	3,	4,	5}	to	a	set	B,	then	the	number	
of elements in B is [PTA - 2]

 (A) 3 (B) 2 (C) 4 (D) 8
 [Ans. (B)	 2]
Hint:   n(A) = 5

   n(B) = x
   n(A × B) = 1024 = 210

   25x = 210 ⇒ 5x = 10
 ⇒ x = 2
5. The	 range	 of	 the	 relation	R=	 {(x, x2) |x is a 

prime	number	less	than	13}	is	 [PTA - 4; Hy - 2019] 

 (A) {2,3,5,7}  (B) {2,3,5,7,11}
 (C) {4,9,25,49,121} (D) {1,4,9,25,49,121}

 [Ans. (C)	 {4,	9,	25,	49,	121}]
Hint:  R = {(x, x2)/x is a prime number <13}
� �� The�squares�of�2,�3,�5,�7,�11�are�
   {4, 9, 25, 49, 121}
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6. If the ordered pairs (a +	2,	4)	and	(5,2a + b)
are	equal	then	(a, b) is

 (A) (2, –2)   (B) (5,1)
 (C) (2,3)   (D) (3, –2)
 [Ans. (D)	 (3,	–2)]
Hint:  (a + 2, 4), (5, 2a + b) ⇒ a + 2 = 5 

   a = 3 ⇒ 2a + b = 4
     6 + b = 4 ⇒ b = –2
7. Let n(A) = m and n(B) = n then the total 

number	 of	 non-empty	 relations	 that	 can	 be	
defined	from	A	to	B	is

 (A) mn  (B) nm  (C) 2mn –1 (D) 2mn

 [Ans. (C)	 2mn–1]
Hint:   n(A) = m

   n(B) = n
   n(A × B) = m × n = mn
   No. of relations = 2n(A×B) = 2mn
 Non-empty relations = 2mn–1
8. If {(a, 8),(6, b)}represents	an	identity	function,	

then the value of a and b	are	respectively
 [PTA - 1]
 (A) (8,6) (B) (8,8) (C) (6,8) (D) (6,6)
 [Ans. (A)	 (8,6)]
Hint: {(a, 8), (6, b)} ⇒ a = 8 ⇒ b = 6

9. Let	A	 =	 {1,	 2,	 3,	 4}	 and	 B	 =	 {4,	 8,	 9,	 10}.	 
A function f :A→	 B	 given	 by	 f =	 {(1,	 4), 
(2,	8),(3,	9),(4,	10)}	is	a	 [PTA - 4]

 (A) Many-one function
 (B) Identity function
 (C) One-to-one function
 (D) Into function
 [Ans. (C)	 One-to	one	function]
Hint:     A = {1, 2, 3, 4), B = {4, 8, 9, 10}

  
1

2

3

4

4

8

9

10

10. If f(x) = 2x2 and g (x) = 
1

3x , Then fog is
  [Hy - 2019]

 (A) 
3

2 2x
 (B) 

2
3 2x

 (C) 
2

9 2x
 (D) 

1
6 2x

 [Ans. (C)	
2

9 2x
]

Hint:  f(x) = 2x2 ⇒
 
g(x) = 

1
3x

   fog = f(g(x)) = f 1
3x







 = 2 1
3

2

x






    = 2 × 
1

9 2x
 = 

2
9 2x

11. If f : A → B is a bijective function and if  
n(B)	=	7	,	then	n(A)	is	equal	to	 [PTA - 2]

 (A) 7 (B) 49 (C) 1 (D) 14
 [Ans. (A)	7]
Hint:  In a bijective function, n(A) = n(B) ⇒ n(A) = 7

12. Let f and g	 be	 two	 functions	 given	 by	 
f	=	{(0,	1),	(2,	0),	(3,	−4),	(4,	2),	(5,	7)}

 g	=	{(0,	2),(1,	0),	(2,	4),	(−4,	2),	(7,0)}	then	the	
range	of	fog is

 (A) {0,2,3,4,5}  (B) {–4,1,0,2,7}
 (C) {1,2,3,4,5}  (D) {0,1,2}
 [Ans. (D)	{0,	1,	2}]
Hint:  gof = g(f (x)) 

   fog = f (g (x))
    = {(0, 2),(1, 0),(2, 4),(–4, 2),(7, 0)}
 Range of fog = {0, 1, 2}

13. Let f(x)= 1 2+ x  then
 (A) f(xy) = f (x).f(y) (B) f(xy) ≥ f(x).f(y)
 (C) f(xy) ≤ f(x).f(y) (D) None of these
 [Ans. (C)	f(xy) ≤ f(x).f(y)]

Hint:    1 1 12 2 2 2+ £ +( ) +( )x y x y
 ⇒ f(xy) 7 f(x) . f(y)

14. If g	=	{(1,	1),(2,	3),(3,	5),(4,	7)}	 is	a	function	
given	 by	 g(x) = αx + b then the values of  
α and b are [PTA - 6]

 (A) (–1, 2)   (B) (2, –1)
 (C) (–1, –2)  (D) (1,2)[Ans.(B)	(2,	–1)]
Hint:  g(x)� =� αx�+�β

   α� =� 2
� �� β� =� –1
   g(x) = 2x – 1
   g(1) = 2(1) – 1 = 1
   g(2) = 2(2) – 1 = 3
   g(3) = 2(3) – 1 = 5
   g(4) = 2(4) – 1 = 7
15. f(x) = (x +	1)3	−	(x −	1)3	represents a function 

which	is	 [PTA - 5; Qy - 2019]

 (A) linear   (B) cubic
� (C)� reciprocal� � (D)� quadratic
 [Ans. (D)	quadratic]
Hint:  f(x) = (x + 1)3 – (x – 1)3

    = x3 + 3x2 + 3x + 1 – [x3 – 3x2 + 3x�–�1]
 = x x x x x x3 2 3 23 3 1 3 3 1+ + + − + − + = 6x2 + 2
� It�is�a�quadratic�function.
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17 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

Unit Exercise - 1 

1. If the ordered pairs (x2−	3x, y2 +	4y) and (–2,5) 
are	equal,	then	find	x and y.

Sol. (x2 – 3x, y2 + 4y) = (–2, 5)
   x2 – 3x = –2
   x2 – 3x + 2 = 0
   (x – 2)(x – 1) = 0
    x = 2, 1
    y2 + 4y = 5
   y2 + 4y – 5 = 0
   (y + 5)(y – 1) = 0
   y = –5, 1
2. The cartesian product A × A has 9 elements 

among	which	(–1,	0)	and	(0,1)	are	found.	Find	
the	set	A	and	the	remaining	elements	of	A	×	A.

Sol.  A = {–1, 0, 1}, B = {1, 0, –1}
   A × B = { (–1, 1), (–1, 0), (–1, –1), (0, 1), 

(0, 0), (0, –1), (1, 1), (1, 0),  
(1, –1)}

3. Given that f (x ) = x x− ≥
<






1 1

4 1x
.	Find

 (i) f(0)		 (ii)	f(3)	
 (iii) f(a	+	1)	in	terms	of	a.(Given	that	a 8	0	)
Sol. (i) f (0) = 4
 (ii) f (3) = 3 1−  = 2
 (iii) f (a + 1) = a + −1 1  = a

4. Let	 A={9,10,11,12,13,14,15,16,17}	 and	 let	 
f : A→	N	be	defined	by	f(n)=	the	highest	prime	
factor of n∈A.	Write	f as a set of ordered pairs 
and	find	the	range	of	f.

Sol.   A = {9, 10, 11, 12, 13, 14, 15, 16, 17}
   f : A → N
   f (n) = the highest prime factor of n ∈ A
   f = { (9, 3), (10, 5), (11, 11), (12, 3), (13, 

13), (14, 7), (15, 5), (16, 2), (17, 17)}
   Range = {3, 5, 11, 13,7, 2, 17}= {2, 3, 5, 7, 11, 13, 17}

5. Find the domain of the function  

f(x) = 1 + 1 1 2− − x .

Sol.   f (x) = 1 1 1 2+ − − x
   Domain of f (x) = {–1, 0, 1}

(x2 = 1, –1, 0, because 1 2− x  should be +ve, or 0)

2

–2 –1
–5

+5 –1

6. If f(x)= x2 , g(x)	=	3x and h(x) = x −	2	.	Prove	
that (f og)oh = fo(goh).

Sol.     f (x) = x2

   g(x) = 3x
   h(x) = x – 2
    (fog)oh = x – 2
    LHS = fo(goh)
   fog = f(g(x)) = f(3x) = (3x)2 = 9x2

   (fog)oh = (fog) h(x) = (fog) (x – 2)
     = 9(x – 2)2 = 9(x2 – 4x + 4)
    = 9x2 – 36x + 36 ...(1)
    RHS = fo(goh)
    (goh) = g(h(x)) = g(x – 2) 
    = 3(x – 2) = 3x – 6
   fo(goh) = f (3x – 6) = (3x – 6)2

    = 9x2 – 36x + 36 ...(2)
   (1) = (2)
   LHS = RHS
  (fog)oh = fo(goh) is proved.

7. Let	A	=	{1,	2}	and	B	=	{1,	2,	3,	4}	,	C	={5,	6}	and	 
D	 =	 {5,	 6,	 7,	 8}	 .	 Verify	 whether	A×C	 is	 a	
subset	of	B×D?

Sol.   A = {1, 2), B = {1, 2, 3, 4}

   C = {5, 6}, D = {5, 6, 7, 8}

   A × C = { (1, 5), (1, 6), (2, 5), (2, 6)}

   B × D = { (1, 5), (1, 6), (1, 7), (1, 8),  
 (2, 5), (2, 6), (2, 7), (2, 8),  
 (3, 5), (3, 6), (3, 7), (3, 8),  
 (4, 5), (4, 6), (4, 7), (4, 8)}

  (A × C) ⊂ (B × D)  It is proved.

8. If f(x) = 
x
x

− 1
+ 1

 , x ≠ 1	show	that	f (f (x))	=	−
1
x

 , 

provided x ≠	0	.

Sol.  f (x) = x
x

−
+

1
1

, x�≠�1

   f ( f (x)) = f x
x

−
+







1
1

 = 

x
x
x
x

−
+







−

−
+







+

1
1

1

1
1

1

    = 

x x
x

x x
x

− − −
+

− + +
+

1 1
1

1 1
1

( )

( )

= −2
2x

 = 
−1
x

 Hence it is proved.
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18  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

9. The function f and g	are	defined	by	f(x) = 6x +	8;		

g(x) = 
x − 2

3
.

	 (i)	 Calculate	the	value	of	gg 1
2







	 (ii)	 	Write	 an	 expression	 for	 gf(x) in its 
simplest	form.

Sol.  f (x) = 6x + 8

   g(x) = 
x − 2

3
 (i)  gg(x) = g(g(x))
   

 = g x −





2
3

 = 

x − −2
3

2

3
 

   = 
x − − ×2 6

3
1
3

 = 
x − 8

9

   gog 1
2







 = 

1
2

8

9

−
= 1 16

2
1
9

− × = −15
18

 = 
−5
6

 

 (ii) gof(x) = g(f(x)) = g(6x + 8)

    = 
6 8 2

3
x + −

 = 
6 6

3
x +

    = 
3 2 2

3
x +( )

= 2x + 2 = 2(x + 1)

10. Write	 the	 domain	 of	 the	 following	 real	
functions

 (i) f (x) = 
2 + 1

9
x

x −
  [PTA - 6]

 (ii) p (x) = −
+

5
4 12x

 (iii) g(x) = x − 2  [PTA - 6]
 (iv) h(x) = x + 6
Sol. (i) f (x) = 

2 1
9

x
x

+
−

    The denominator should not be zero as the 
function is a real function.

   \ The domain = R –{9}

 (ii)  p(x) = 
−

+
5

4 12x
   The domain is R.

 (iii)  g(x) = x − 2
   The domain = [2, ∝]
 (iv)  h(x) = x + 6
   The domain is R.

PTA EXAM QUESTION & ANSWERS

1 MARK

1. If n(A) = p, n (B) = q then the total number of 
relations	that	exist	between	A	and	B	is	[PTA -1]

 (A) 2p (B) 2q (C) 2p + q (D) 2pq

 [Ans. (D) 2pq]
2. Given f(x)	 (–	 1)x is a function from N to Z.	

Then	the	range	of	f is [PTA - 3]

 (A) {1} (B) N (C) {1, –1} (D) Z
 [Ans. (C){1,	–1}]
3. The	given	diagram	represents [PTA - 6]

 (A) an onto function 2

4

6

5

4

2

18

15

 (B) constant function
 (C) an one-one function
 (D) not a function
 [Ans. (D) not	a	function]
Hint:  4 has no image

2 MARKS
1. A	relation	‘f ’	is	defined	by	f(x) = x2 −	2	where,	 

x ∈{–2,	 –1,	 0,	 3}	 (i)	 List	 the	 elements	 of	 f  
(ii) Is f a	function?	 [PTA - 1; Qy - 2019]

Sol.  f(x) = x2 – 2 where x ∈ {–2, –1,0,3}
(i) f(–2) = (–2)2 –2 = 2;
 f(–1) = (–1)2 –2 = – 1
 f(0) = 02–2 = – 2
 f(3) = 32 – 2 = 9 – 2 = 7
 \f = {(–2, 2), (–1, –1), (0, –2),(3,7)}
(ii)  We note that each element in the domain 

of f�has�a�unique�image.
Therefore f is a function. 

2. A	relation	R	is	given	by	the	set	{(x, y)/y = x2	+	3, 
x∈{0,1,2,3,4,5}} Determine its domain and 
range. [PTA - 2]

Sol.  Domain = {0, 1, 2, 3, 4, 5}
   x = 0, y = 02 + 3 = 3
   x = 1, y = 12 + 3 = 4
   x = 2, y = 22 + 3 = 7
   x = 3, y = 32 + 3 = 12
   x = 4, y = 42 + 3 = 19
   x = 5, y = 52 + 3 = 28
    Range = {3, 4, 7, 12, 19, 28}

3. Find k, if f(k)=2k	−1	and	fof(k)	=	5.	 [PTA - 4]

Sol.  f (k) = 2k – 1
    Consider fo f (k) = f (f (k)) = f (2k – 1)
 [ f (x) = 2k�–�1]
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19 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

    = 2(2k – 1) – 1
 [In f (k) = 2k – 1, replace k by 2k�–�1]
    = 4k – 2 – 1 = 4k – 3
 ⇒  4k – 3 = 5 ⇒ 4k = 5 + 3 = 8

 ⇒  k = 
8
4

 = 2

   \ k  = 2
4. Let	A	=	{1,	2,	3,	...,	100}	and	R	be	the	relation	

defined	as	“is	cube	of”	on	A.	Find	the	domain	
and	range	of	R.	 [PTA - 4]

Sol.  R = {(1,1) (2,8), (3,27), (4, 64)}
   Domain = {1, 2, 3, 4}
   Range = {1, 8, 27, 64}
5. Let	A	=	{1,	2,	3,	4}	and B = N.	Let f : A → B 

be	 defined	 by f(x) = x2 (i)	 the	 range	 of	 f  
(ii)	identify	the	type	of	function.	 [PTA - 5]

Sol. f (1) =1; f (2) = 4; f (4) = 9; f (4) = 16
 (i) Range = {1, 4, 9, 16}
  (ii) One - one and into function
6. Let f  be a function from R to R	defined	by	 

f(x)	=	3x – 5 Find the values of a and b	given	
that (a,	4)	and (1,	b)	belong	to f	. [PTA - 6]

Sol.  f (x) = 3x – 5 can be written as  
   f = {(x, 3x – 5)| x ∈R} 

 (a, 4) mean the image of a  is 4. 

 That is, f (a) = 4
   3a – 5 = 4 ⇒ a = 3
 (1, b) means the image of 1 is b. That is,
   That is, f (1) = b ⇒ b = –2
   3(1) – 5 = b ⇒ b = –2
7. R	=	 {(x, – 2), (–5, y)	 represents	 the	 identity	

function,	find	the	values	x and y. [PTA - 6]
Sol.  x =  – 2 
   y = – 5

5 MARKS

1. Let	A	=	{1,	2,	3,	4} and	B	=	{2,	5,	8,	11,	14} be 
two	sets.	Let f : A → B be	a	function	given	by  

f(x)	=	3x	–	1	Represent	this	function.	 [PTA - 3]
 (i)	 by	arrow	diagram	 [Sep.-2020]
 (ii) in a table form
 (iii) as a set of ordered pairs
	 (iv)	 in	a	graphical	form
Sol. Let A = {1, 2, 3, 4} ; B = {2, 5, 8, 11, 14};  

f(x) = 3x – 1
 f(1) = 3(1) – 1 = 3 – 1 = 2; f(2) = 3(2) – 1 = 6 –1 = 5
 f(3) = 3(3) –1 = 9 – 1 = 8; f(4) = 4(3) – 1 = 12 –1 = 11

 (i) Arrow	diagram
   Let us represent the function  f :A → B by 

an arrow diagram

1

2

3

4

2

5

8

11

14

A Bf

 (ii) Table form
   The given function f can be represented in 

a tabular form as given below
x 1 2 3 4

f(x) 2 5 8 11
(iii)	Set	of	ordered	pairs
 The function f can be represented as a set 

of ordered pairs as
 f = (1, 2),(2, 5),(3, 8),(4, 11)
(iv) Graphical form

 

(1, 2)

(2, 5)

(4, 11)

(3, 8)

XX′
Y′

-1  1 2 3 4 5

Y

11

10

9

8

7

6

5

4

3

2

1

0

 In the adjacent xy -plane the points
 (1,2), (2,5), (3,8), (4,11) are plotted

2. Let A = {x ∈W/	0	<	x	<	5},	B	=	{x ∈W/	0	≤ x ≤	2},	
C	=	{x ∈W/ x	<	3}	then	verify	that	A × (B ∩ C)	
= (A × B) ∩	(A×	C)	 [PTA - 3]

Sol.  A = {1, 2, 3, 4}  
   B = {0, 1, 2}
  C = {0, 1, 2}
  B ∩ C = {0, 1, 2} ∩ {0, 1, 2} = {0, 1, 2}
  A × (B ∩ C) = {1, 2, 3, 4} × {0, 1, 2}
   = {(1,0), (1,1), (1, 2), (2,0), (2,1), 

   (2, 2), (3, 0), (3, 1), (3, 2), (4, 0),
    (4, 1), (4,2)} ... (1)
  A × B = {1, 2, 3, 4} × {0, 1, 2}
   = {(1,0), (1,1), (1,2), (2,0),(2,1),(2,2),
    (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)
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20  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

  A × C = {1, 2, 3, 4} × {0, 1, 2}
   = {(1,0), (1,1), (1,2), (2,0),(2,1),(2,2),
    (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)
 (A × C) ∩(A×C) = {1, 2, 3, 4} × {0, 1, 2}
  = {(1,0), (1,1), (1,2), (2,0),(2,1),(2,2),
   (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)
 ... (2)
 (1) = (2)  Hence it is proved.
3. f(x) = 2x +	3,	g(x)	=	1	–	2x and h(x)	=	3x,  prove 

that fo(g o h) = (f o g) oh. [PTA - 5]

Sol.   f(x) = 2x + 3, g(x) = 1 – 2x,
   h (x) = 3x
  Now, (f o g)(x) = f(g(x)) = f(1– 2x)
    = 2(1 – 2x) + 3 = 5 – 4x 
 Then,
   (f o g)oh(x) = (f o g)h(x)) = (f o g)(3x) 
    = 5 – 4(3x) = 5 – 12x ... (1)
   (g o h)(x) = g(h(x)) = g(3x) = 1 – 2(3x)
    = 1 – 6x
 So,
   f o (g o h )(x) = f (1 – 6x)
     = 2 (1 – 6x) + 3 
    = 5 – 12x ... (2)
 From (1)  and (2), we get 
   (f o g) oh = f o (g o h)

GOVT. EXAM QUESTION & ANSWERS

1 MARK

Multiple choice questions.

1. f = {(2, a),	(3,	b),	(4,	b), (5, c)}	is	a	_________.
  [Govt. MQP - 2019]

(A) identity function (B) one-one function
(C) many-one function (D) constant function

 [Ans. (C)	many-one	function]
Hint:  2

3

4

5

a

b

c

2. Let f (x) = x2 – x, then f (x	–	1)	–	f(x	+	1)	is	:
  [Sep.-2020]

 (A) 4x (B) 2 –2x (C) 2 – 4x (D) 4x – 2
 [Ans. (C)	2	–	4x]
Hint:  f (x – 1) = (x – 1)2 – (x – 1)

    = x2 – 2x + 1 – (x – 1)

    = x2 – 2x + 1 – x + 1
    = x2 – 3x + 2
   f (x + 1) = (x + 1)2 – (x + 1)
    = x2 + 2x + 1 – x – 1
    = x2 + x 
   \ f (x – 1) – f (x + 1)
    = (x2 – 3x + 2) – (x2 + x)
    = x2 – 3x + 2 – x2 – x
    = – 4x2 + 2

3. If n(A)= p and n(B)= q then n(A×B)=	_______ 
 [Qy - 2019]

 (A) p + q (B) p – q (C) p × q (D) p
q

 [Ans. (C)	p × q]
Hint:  n (A × B) = n (A) × n (B) = p × q

2 MARKS

1. Define	a	function.	 [Govt. MQP - 2019]

Sol.  A relation f between two non-empty sets X and 
Y is called a function from X to Y if, for each  
x ∈ X there exists only one y ∈ Y such that  
(x, y)∈ f. 

 That is, f = {(x, y) | for all x ∈ X, y ∈Y}
2. Let f be a function f :  → 	be	defined	by	 

f (x)	=	3x + 2, x ∈ . [Govt. MQP - 2019]

 (i) Find the images of 1, 2, 3
 (ii) Find the pre-images of 29, 53 
 (iii) Identify the type of function
Sol. f :  →  is�defined�by�f (x) = 3x + 2, 
 (i) f (1) = 3 (1) + 2 = 3 + 2 = 5
     f (2) = 3 (2) + 2 = 6 + 2 = 8
     f (3) = 3 (3) + 2 = 9 + 2 = 11
   The images of 1, 2, 3 are 5, 8, 11 respectively.
 (ii) If x is the pre-image of 29, then f (x) = 29. 
 ⇒ 3x +2 = 29
   3x = 27
 ⇒  x = 9.
 Similarly, if x is the pre-image of 53, then 

f (x) = 53. ⇒ 3x +2 = 53
   3x = 51
 ⇒ x = 17.
 \the pre-images of 29 and 53 are 9 and 17 

respectively.
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