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	 From the bottom of our heart, we at SURA Publications 
sincerely thank you for the support and patronage that you 
have extended to us for more than a decade.
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releasing SURA’S Mathematics for 10th Standard  
- Edition 2021-22. This guide has been authored and edited 
by qualified teachers having teaching experience for over 
a decade in their respective subject fields. This Guide has 
been reviewed by reputed Professors who are currently 
serving as Head of the Department in esteemed Universities 
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	 With due respect to Teachers, I would like to mention 
that this guide will serve as a teaching companion to 
qualified teachers. Also, this guide will be an excellent 
learning companion to students with exhaustive exercises, 
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addition to precise answers for exercise problems.
	 In complete cognizance of the dedicated role of 
Teachers, I completely believe that our students will learn 
the subject effectively with this guide and prove their 
excellence in Board Examinations. 
	 I once again sincerely thank the Teachers, Parents and 
Students for supporting and valuing our efforts. 

God Bless all. � Subash Raj, B.E., M.S.
- Publisher
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1 Relations And 
Functions

FORMULAE TO REMEMBER

�� Vertical line test :

	 A curve drawn in a graph represents a functions, if every vertical line intersects the curve in at 
most one point.

�� Horizontal line test :

	 A function represented in a graph is one - one, if every horizontal line intersect the curve in at 
most one point.

�� Linear functions has applications in Cryptography as well as in several branches of Science and 
Technology.

[1]
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2  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

EXERCISE 1.1

1.	 Find A× B, A×A and B ×A
	 (i)	 A = {2,−2,3} and B ={1,−4} (ii) A= B ={p,q} 

(iii)	A= {m,n} ; B = ϕ   [PTA - 1]

Sol.	 (i)	    A = {2, –2, 3}, B = {1, –4}
			  A × B	 =	� {(2, 1), (2, –4), (–2, 1), (–2, –4), 

� (3, 1), (3, –4)}
			  A × A	 =	� {(2, 2), (2, –2), (2, 3), (–2, 2), 

� (–2, –2), (–2, 3), (3, 2), (3, –2), 
� (3, 3)}

			  B × A	 =	� {(1, 2), (1, –2), (1, 3), (–4, 2),  
� (–4, –2), (–4, 3)}

	 (ii)	 A = B	 =	 {(p,q)
			  A × B	 =	 {(p, p), (p, q), (q, p), (q, q)}
			  A × A	 =	 {(p, p), (p, q), (q, p), (q, q)}	
			  B × A	 =	 {(p, p), (p, q), (q, p), (q, q)}	
	 (iii)	 A	 =	 {m,n} , B = ϕ
			  A × B	 =	 { }
			  A × A	 =	 {(m,m), (m,n), (n, m), (n, n)}
			  B × A	 = 	{   }

2.	 Let A = {1, 2, 3} and B = {x | x is a prime 
number less than 10}. Find A× B and B × A.

Sol.	                A	 =	 {1, 2, 3}, B = {2, 3, 5, 7}
			  A × B	 =	 {�(1, 2), (1, 3), (1, 5), (1, 7), (2, 2), 

(2, 3), (2, 5), (2, 7), (3, 2), (3, 3), 
� (3, 5), (3, 7)}

			  B × A	 =	 {�(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), 
(3, 3), (5, 1), (5, 2), (5, 3), (7, 1), 
� (7, 2), (7, 3)}

3.	 If B ×A={(−2, 3),(−2, 4),(0, 3),(0, 4),(3, 3), 
(3, 4)} find A and B.� [Qy - 2019]

Sol.	 Given B × A =	{(–2, 3), (–2, 4), (0, 3), (0, 4), (3, 3), 
� (3, 4)}

	 Here B = { –2, 0, 3}
� [All the first elements of the order pair]
	 and A = {3, 4}
� [All the second elements of the order pair]

4.	 If A ={5, 6}, B = {4, 5, 6} , C ={5, 6, 7}, Show 
that A×A = (B × B)∩(C ×C).

Sol.	 	               A	 =	 {5, 6}, B = {4, 5, 6},C = {5, 6, 7}
	 		 A × A	 =	 {(5, 5), (5, 6), (6, 5), (6, 6)}�...(1)
	 		 B × B	 =	 {(4, 4), (4, 5), (4, 6), (5, 4), 

				   (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}
� ...(2)

	 		 C × C	 =	 {(5, 5), (5, 6), (5, 7), (6, 5), (6, 6), 
					    (6, 7), (7, 5), (7, 6), (7, 7)}� ...(3)
	 (B × B) ∩ (C × C) = {(5, 5), (5, 6), (6, 5), (6, 6)}

� ...(4)
	 (1) = (4) 
			  A × A 	=	 (B × B) ∩ (C × C).� It is proved.

5.	 Given A ={1, 2, 3}, B = {2, 3, 5}, C = {3, 4} 
and D = {1, 3, 5}, check if(A∩C) × (B∩D) = 
(A×B)∩(C × D) is true?� [Qy - 2019]

Sol.	           LHS	 =	 {(A ∩ C) × (B ∩ D)
			  A ∩ C	 =	 {3}
			  B ∩ D	 =	 {3, 5}
		 (A ∩ C) × (B ∩ D) = {(3, 3) , (3, 5)}� ...(1)
			  RHS	 =	 (A × B) ∩ (C × D)
			  A × B	 =	 {�(1, 2), (1, 3), (1, 5), (2, 2), (2, 3),  

(2, 5), (3, 2), (3, 3), (3, 5)}
	 C × D ={(3, 1), (3, 3), (3, 5), (4, 1), (4, 3), (4, 5)}
		 (A × B) ∩ (C × D) = {(3, 3), (3, 5)}� ...(2)
	 \	(1) = (2) \ It is true.

6.	 Let A={x ∈W |x < 2}, B = {x∈N |1 < x ≤ 4} and 
C = {3, 5} . Verify that

	 (i)	 A × (B∪C) =(A × B)∪(A × C)� [PTA - 2]

	 (ii)	 A×(B∩C) = (A × B)∩(A × C)� [PTA - 5]

	 (iii)	 (A∪B) × C = (A×C)∪(B × C)

(i)	 A × (B ∪ C)	 =	 (A × B) ∪ (A × C)
Sol.	 		 A	 =	 {x ∈W |x < 2}= {0, 1}
Sol.	 � [Whole numbers less than 2] 
			  B	 =	 {x∈N |1 < x ≤ 4}={2, 3, 4}
			  C	 =	 {3, 5}
Sol.	 � [Natural numbers from 2 to 4] 
			  LHS	 =	 A × (B ∪ C)
			  B ∪ C	 =	{2, 3, 4} ∪ {3, 5}
				   =	{2, 3, 4, 5}
			  A × (B ∪ C)	 =	{�(0, 2), (0, 3), (0, 4), (0, 5), 

(1, 2), (1, 3), (1, 4),(1, 5)}
� ...(1)

			  RHS	 =	(A × B) ∪(A × C)
			  (A × B)	 =	{�(0, 2), (0, 3), (0, 4), (1, 2), 

(1, 3), (1, 4)}
			  (A × C)	 =	{(0, 3), (0, 5), (1, 3), (1,5)}
		 (A × B) ∪ (A × C)	=	{�(0, 2), (0, 3), (0, 4), (0, 5), 

(1, 2), (1, 3), (1, 4),(1, 5)}
� ...(2)

			  (1) = (2), LHS	 =	RHS	 Hence it is proved.
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3 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

(ii)	 	A × (B – C) = (A × B) – (A × C)
			  LHS	 =	 A × (B – C)
		 	 (B – C)	 =	 {3, 5, 7}
		 A × (B – C)	=	 {�(1, 3), (1, 5), (1, 7), (2, 3), (2, 5),  

(2, 7), (3, 3), (3, 5), (3, 7), (4, 3),  
(4, 5), (4, 7), (5, 3), (5, 5), (5, 7),  
(6, 3), (6, 5), (6, 7), (7, 3), (7, 5),  
� (7, 7)}   ...(1)

			  RHS	 =	 (A × B) – (A × C)
			  (A × B)	 =	  {�(1, 2), (1, 3), (1, 5), (1, 7),  

(2, 2), (2, 3), (2, 5), (2, 7),  
(3, 2), (3, 3), (3, 5), (3, 7),  
(4, 2), (4, 3), (4, 5), (4, 7),  
(5, 2), (5, 3), (5, 5), (5, 7),  
(6, 2), (6, 3), (6, 5), (6, 7),  
(7, 2), (7, 3), (7, 5), (7,7)}

(A × C) =	{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)}
(A × B) – (A × C) = �(1, 3), (1, 5), (1, 7), (2, 3), (2, 5), 

(2, 7), (3, 3), (3, 5), (3, 7), (4, 3), 
(4, 5), (4, 7), (5, 3), (5, 5), (5, 7), 
(6, 3), (6, 5), (6, 7), (7, 3), (7, 5),  
� (7, 7)}    ...(2)

		 (1) = (2) ⇒ LHS = RHS.	 Hence it is verified.

EXERCISE 1.2

1.	 Let A = {1,2,3,7} and B = {3,0,–1,7}, which 
of the following are relation from A to B ?

	 (i)	 R1 = {(2,1), (7,1)}
	 (ii)	 R2 = {(–1,1)}
	 (iii)	 R3 = {(2,–1), (7,7), (1,3)}
	 (iv)	 R4 = {(7,–1), (0,3), (3,3), (0,7)}
Sol.	 Given A = {1, 2, 3, 7} and B = {3, 0, –1, 7}
(i)	 R1 =	 {(2, 1), (7, 1)}�
	 2 and 7 cannot be related to 

1 since 1 ∉B
	 ∴ R1 is not a relation.
(ii)	 R2 =	 {(–1, 1)}
	� –1 cannot be related to 1 

since –1 Ï A and 1 Ï B
	 ∴ R2 is not a relation.
(iii)	 R3 =	 {(2, –1), (7, 7), (1, 3)}

1

2

3

7

3

0

-1

7

A B

R3 is a relation since 
2 is related to –1, 7 is 
related to 7 and 1 is 
related to 3.

	 (ii)	 A × (B  ∩ C)	 =	 (A × B)  ∩ (A × C)
			  LHS	 =	 A × (B  ∩ C)
			  (B  ∩ C)	 =	 {3}
			  A × (B  ∩ C)	 =	 {(0, 3), (1, 3)}� ...(1)
			  RHS	 =	 (A × B)  ∩ (A × C)
			  (A × B)	 =	 {(0, 2), (0, 3),(0, 4), (1, 2), 
					�     (1, 3), (1, 4)}
			  (A × C)	 =	 {(0, 3), (0, 5), (1, 3), (1,5)}
	 (A × B)  ∩ (A × C)	 =	 {(0, 3), (1, 3)}� ...(2)
			 (1) = (2) ⇒ LHS	 =	 RHS.
	 Hence it is verified.
(iii)	 (A ∪ B) × C = (A × C) ∪ (B × C)
			  LHS	 =	 (A ∪ B) × C
			  A ∪ B	 =	 {0, 1, 2, 3, 4}
			 (A ∪ B) × C	 =	 {�(0, 3), (0, 5), (1, 3), (1, 5), 

(2, 3), (2, 5), (3, 3), (3, 5), 
� (4, 3), (4, 5)}  ...(1)

			  RHS	 =	 (A × C) ∪ (B × C)
			  (A × C)	 =	 {�(0, 3), (0, 5), (1, 3), (1, 5)}
			  (B × C)	 = 	 {�(2, 3), (2, 5), (3, 3), (3, 5), 

� (4, 3), (4, 5)}
	 (A × C) È (B × C) = {�(0, 3), (0, 5), (1, 3), (1, 5),  

(2, 3), (2, 5), (3, 3), (3, 5),  
� (4, 3), (4, 5)}...(2)

		 (1) = (2)
			  \ LHS	 =	 RHS. Hence it is verified.

7.	 Let A = The set of all natural numbers less 
than 8, B = The set of all prime numbers less 
than 8, C = The set of even prime number. 
Verify that

	 (i)	 (A∩ B) × C = (A × C)∩(B × C) [Sep. - 2020] 
	 (ii)	 A× (B − C ) = (A × B) − (A × C)� [PTA - 1]
		  A	 =	 {1, 2, 3, 4, 5, 6, 7}
			  B	 =	 {2, 3, 5, 7}
			  C	 =	 {2}
� [  2 is the only even prime number]
Sol.	 (i)	(A ∩ B) × C = (A × C) ∩ (B × C)
			  LHS	 =	 (A ∩ B) × C
			  A ∩ B	 =	 {2, 3, 5, 7}
		 (A ∩ B) × C = {(2, 2), (3, 2), (5, 2), (7, 2)}

� ...(1)
			  RHS	 =	 (A × C) ∩ (B × C)
			  (A × C)	 =	 {�(1, 2), (2, 2), (3, 2), (4, 2), (5, 2),  

� (6, 2), (7, 2)}
			  (B × C)	 =	 {(2, 2), (3, 2), (5, 2), (7, 2)}
		 (A × C) ∩ (B × C) = {(2, 2), (3, 2), (5, 2), (7, 2)}

� ...(2)
		 (1) = (2)
		 \ LHS = RHS. Hence it is verified.

1

2

3

7

A B

3

0

−1

7
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4  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

(iv)	 R4=	 {(7, –1), (0, 3), (3, 3), (0, 7)}

1

2

3

7

3

0

-1

7

A B 7 is related to –1
3 is related to 3
Since 0 Ï A, 0 cannot 
be related to 3 and 7.
∴ R4 is not a relation.

2.	 Let A={1, 2, 3, 4,...,45} and R be the relation 
defined as “is square of ” on A. Write R as 
a subset of A × A. Also, find the domain and 
range of R.

Sol.	 Given A ={1, 2, 3, 4, . . . 45}
	 ∴ A × A = {(1, 1) (1, 2) (1,3) ... (1, 45)
				   (2, 1) (2, 2) ... (2, 45) (45, 1) (45, 2) 

� (45, 3) ... (45, 45)}        ... (1)
	 R is defined as “is square of ”
	 ∴ R = {(1,1) (2,4) (3,9) (4,16) (5, 25) (6,36)}... (2)
� [ 1 is the square of 1, 2 is the 
� square of 4 and so on]
	 From (1) and (2), R is the subset of A × A
	 ∴R ⊂ A × A 
	 Domain of R = {1, 2, 3, 4, 5, 6}
� [All the first elements of the order pair in (2)]
	 Range of R = {1, 4, 9, 16, 25, 36}
� [All the second elements of the order pair in (2)]
3.	 A Relation R is given by the set {(x, y) /y = x + 3,  

x ∈{0, 1, 2, 3, 4, 5}}. Determine its domain 
and range.� [PTA - 5]

Sol.	 Given R = {(x, y) /y = x + 3} and  
x ∈{0, 1, 2, 3, 4, 5}

		  When x	 =	0,	 y	 =	0 + 3 = 3� [ y = x + 3]
		  When x	 =	1,	 y	 =	1 + 3 = 4
		  When x	 =	2,	 y	 =	2 + 3 = 5
		  When x	 =	3,	 y	 =	3 + 3 = 6
		  When x	 =	4,	 y	 =	4 + 3 = 7
		  When x	 =	5,	 y	 =	5 + 3 = 8
	 ∴ R ={(0, 3),(1, 4),(2, 5),(3, 6),(4, 7), (5, 8)}
		 ∴Domain of R	 =	 {0, 1, 2, 3, 4, 5}
� [All the first element in R] 
			  Range of R	 =	 {3, 4, 5, 6, 7, 8}
� [All the second element in R]
4.	 Represent each of the given relation by (a) an 

arrow diagram, (b) a graph and (c) a set in 
roster form, wherever possible.

	 (i) {(x, y)|x = 2y, x ∈{2, 3, 4, 5}, y ∈ {1, 2, 3, 4}}

	 (ii) {(x, y)|y = x + 3, x, y are natural numbers < 10}
Sol.	 (i)	R = {(x, y)| x = 2y, x ∈ {2, 3, 4, 5} and  

	 y ∈ {1, 2, 3, 4}}

	 When x	 =	2,	 y	 =	 x
2

 = 2
2

 = 1

� [  x = 2y  ⇒ y = x
2
]

	 When x	 =	3,	 y	 =	 3
2

	 When x	 =	4,	 y	 =	 4
2

= 2

	 When x	 =	5,	 y	 =	 5
2

(a) 

2

3

4

5

an arrow diagram

1

2

3
4

3 cannot be related 

to 3
2

 and 5 cannot be 

related to 5
2

.

	 (b) a graph
	  

1

0x′ x

y

y′
−1

1 2 3 4 5

2

3

4

(2, 1)

(4, 2)

5

		 (c) Roster form : R = {(2, 1), (4, 2)}
(ii)	 R = {(x, y)|y = x + 3, 
	 x and y are natural numbers <10}
		 x = {1, 2, 3, 4, 5, 6, 7, 8, 9
		 y = {1, 2, 3, 4, 5, 6, 7, 8, 9}
� [ x and y are natural numbers less than 10]
	 Given y	 =	 x + 3
	 When x	 =	1,	 y	 =	1 + 3 = 4
	 When x	 =	2,	 y	 =	2 + 3 = 5
	 When x	 =	3,	 y	 =	3 + 3 = 6
	 When x	 =	4,	 y	 =	4 + 3 = 7
	 When x	 =	5,	 y	 =	5 + 3 = 8
	 When x	 =	6,	 y	 =	6 + 3 = 9
	 When x	 =	7,	 y	 =	7 + 3 = 10
	 When x	 =	8,	 y	 =	8 + 3 = 11
	 When x	 =	9,	 y	 =	9 + 3 = 12
		 R = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}

[10,11, 12 ∉y]
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5 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

(a)	 an arrow diagram

		  1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

(b)	 a graph
		

1

0x′ x

y

y′
−1

1 2 3 4 5 6 7 8 9

2

3

4 (1, 4)

(2, 5)

(3, 6)

(4, 7)

(5, 8)

(6, 9)

5

6

7

8

9

(c)	 Roster form : 
	 R = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}
5.	 A company has four categories of employees 

given by Assistants (A), Clerks (C), Managers 
(M) and an Executive Officer (E). The 
company provide `10,000, `25,000, `50,000 
and `1,00,000 as salaries to the people 
who work in the categories A, C, M and E 
respectively. If A1, A2, A3, A4 and A5 were 
Assistants; C1, C2, C3,C4 were Clerks; M1, M2, 
M3 were managers and E1, E2 were Executive 
officers and if the relation R is defined by 
xRy, where x is the salary given to person y, 
express the relation R through an ordered 
pair and an arrow diagram.

Sol.	 	           A – Assistants	 →	 A1, A2, A3, A4, A5
			  C – Clerks	 →	 C1, C2, C3, C4
			  M – Managers	 →	 M1, M2, M3
	 E – Executive officer	 →	 E1, E2
	 xRy is defined as x is the salary for assistants is 

`10,000, clerks is `25,000, Manger is `50,000 
and for the executing officer `1,00,000.

(a)	 ∴R = {(10,000, A1), (10,000, A2), (10,000, A3), 
� (10,000, A4), (10,000, A5),

			  (25,000, C1), (25,000, C2), (25,000,C3), 
� (25,000, C4)

			  (50,000, M1), (50,000, M2), (50,000, M3), 
� (1,00,000, E1), (1,00,000, E2)}

(b)	

10000

25000

50000

100000

A
1

A
2

A
3

A
4

A
5

C
1

C
2

C
3

C
4

M
1

M
2

M
3

E
1

E
2

EXERCISE 1.3

1.	 Let f = {(x, y)|x, y ∈ N and y = 2x} be a relation 
on N. Find the domain, co-domain and range. 
Is this relation a function?

Sol.	 	Given f	 =	 {(x, y) |x, y ∈ N and y = 2x}
	 When x	 =	1,	 y	 =	2(1) = 2
	 When x	 =	2,	 y	 =	2(2) = 4
	 When x	 =	3,	 y	 =	2(3) = 6
	 When x	 =	4,	 y	 =	2(4) = 8 and so on.
		  R	 =	{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10),...}
	 Domain of R = {1, 2, 3, 4,...},
	 Range of R = {2, 4, 6, 8,...}

 

1

2

3

4
.
.
.

1

2

3
4

5

6

7

8
.
.
.

Since all the elements 
of domain are related 
to some elements of  
co-domain, this relation  
f is a function.

2.	 Let X = {3, 4, 6, 8}. Determine whether the 
relation R ={(x, f(x)) |x ∈ X, f(x) = x2 + 1} is a 
function from X to N ?

Sol.	 			  x	 =	 {3, 4, 6, 8}
			  R	 =	 ((x, f (x))|x ∈ X, f (x) = x2 + 1}
	 	f (x) = x2 + 1�

3
4
6
8

1
2
.
.
.
10
17
37
65
.
.
.

X

N

		 f(3) = 32 + 1 = 10
		 f(4) = 42 + 1 = 17
		 f(6) = 62 + 1 = 37
		 f(8) = 82 + 1 = 65
		 R = {(3, 10), (4, 17), (6, 37), (8, 65)}
		 Yes, R is a function from X to N.
	 Since all the elements of X are related to some 

elements of N.
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6  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

3.	 Given the function f : x → x2 − 5x + 6, evaluate
	 (i)	 f(–1)	 (ii)	 f(2a)
	 (iii)	 f (2) 	 (iv)	 f(x −1)
	 Give the function f : x → x2 – 5x + 6.
(i)		  	 f (–1)	 =	 (–1)2 – 5(–1) + 6 = 1 + 5 + 6 = 12
(ii)			  f (2a)	 =	 (2a)2 – 5(2a) + 6 = 4a2 – 10a + 6
(iii)			  f (2)	 =	 22 – 5(2) + 6 = 4 – 10 + 6 = 0
(iv)			  f (x – 1)	 =	 (x – 1)2 – 5(x – 1) + 6
				   =	 x2 – 2x + 1 – 5x + 5 + 6
				   =	 x2 – 7x + 12
4.	 A graph representing the function f(x) is 

given in figure it is clear that f (9) = 2.

	
0

10

9

8

7

6

5

4

3

2

1

   1   2   3  4    5  6   7   8   9 10

y
 =

 f (x
)

	 (i)	 Find the following values of the function
			  (a)	 f(0) 	 (b)	f (7)	 (c)	 f(2)	 (d)	 f (10)
	 (ii)	 For what value of x is f(x) = 1?
	 (iii)	 �Describe the following (i) Domain  

(ii) Range.
	 (iv)	 What is the image of 6 under f ?
Sol.	 (i)	 From the graph
	 (a)	 f (0) = 9			     (c)	 f (2) = 6

	(b)	 f (7) = 6		  (d)	 f (10) = 0
	 (ii)		  At x	 =	9.5, f (x) = 1
	 (iii)	 Domain	 =	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
					    =	{x |0 ≤ x ≤ 10, x ∈ R}
				   Range	 =	{x|0 ≤ x ≤ 9, x ∈ R}
					    =	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
	 (iv)	� The image of 6 under f is 5. Since when you 

draw a line at x = 6, it meets the graph at 5.
5.	 Let f (x) = 2x + 5.  If x ≠ 0 then find f x f

x
( + 2) (2)− .

Sol.	 	Given f (x) = 2x + 5, x ≠ 0. f x f
x

( ) ( )+ −2 2

			  f (x)	 =	 2x + 5
	 ⇒ 	 f (x + 2)	 =	 2(x + 2) + 5
				   =	 2x + 4 + 5 = 2x + 9
	 ⇒ 	 f (2)	 =	 2(2) + 5 = 4 + 5 = 9

		 \ f x f
x

( ) ( )+ −2 2  = 
2 9 9x

x
+ −

 =
2x
x

 = 2

6.	 A function f is defined by f(x) = 2x – 3 

	 (i) 	 find f f(0) + (1)
2

	 (ii)	 find x such that f (x) = 0.
	 (iii)	 find x such that f(x) = x .
	 (iv)	 find x such that f(x) = f(1 − x).
Sol.	 	 Given f (x)	 =	 2x – 3

	 (i)	
f f( ) ( )0 1

2
+

			  f (0)	 =	 2(0) – 3 = –3
			  f (1)	 =	 2(1) – 3 = –1

	 \ 
f f( ) ( )0 1

2
+

	 =	
− −3 1

2
 = 

−4
2

 = –2

	 (ii)	 f (x)	 =	 0  ⇒ 2x – 3 = 0
			  2x	 =	 3

			  x	 =	 3
2

	 (iii)	 f (x)	 =	 x ⇒2x – 3 = x ⇒ 2x – x = 3
			  x	 =	 3
	 (iv)	 f (x)	 =	 f (1 – x)
		  	 2x – 3	 =	 2 (1 – x) – 3
		  	 2x – 3	 =	 2 – 2x – 3
	 	 	  2x + 2x	 =	 2 –3 + 3
		    	 4x	 =	 2

		    	  x	 =	
2

4 2
 

			  x	 =	
1
2

7.	 An open box is to be made from a square 
piece of material, 24 cm on a side, by cutting 
equal squares from the corners and turning 
up the sides as shown in figure. Express the 
volume V of the box as a function of x.

x

x

x
24–2x

24–2x

Sol.	 	Volume of the box	 =	 Volume of the cuboid 
				   =	 l × b × h cu. units
			  Here l	 =	 24 – 2x
			  b	 =	 24 – 2x
			  h	 =	 x
			  \V	 =	 (24 – 2x) (24 – 2x) × x
				   =	 (576 – 48x – 48x + 4x2)x
			  V	 =	 4x3 – 96x2 + 576x
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7 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

8.	 A function f is defined by f(x) = 3 − 2x . Find  
x such that f(x2)= (f(x))2.

Sol.	 	 	 Given f (x)	 =	3 – 2x
	 Also, it is given that f (x2) = [f (x)]2

			  f (x2)	 =	 3 – 2x2�[Replacing x by x2]
� ... (1)
			  [f (x)]2	 =	 (3 – 2x)2 = 9 – 12x + 4x2

� ... (2)
� [ (a– b)2 = a2 – 2ab + b2]
	 From (1) and (2),
	 ⇒	 9 – 12x + 4x2	 =	 3 – 2x2

	 ⇒	 9 – 12x + 4x2– 3 – 2x2	 =	 0� 1

–1	 –1
–2	 ⇒	 6x2 – 12x + 6	 =	 0

	 Dividing by 6, we get x2 – 2x + 1 = 0
	 On factorizing we get, (x – 1) (x –1) = 0
	 ⇒	 x	 =	 1

9.	 A plane is flying at a speed of 500 km per 
hour. Express the distance d travelled by the 
plane as function of time t in hours.

Sol.	  	 Speed	 =	
distance covered

time taken
	 ⇒	 distance	 =	 Speed × time
	 ⇒	 d	 =	 500 × t [ time = t hrs]
	 ⇒	 d	 =	 500 t

10.	 The data in the adjacent table depicts 
the length of a person forehand and their 
corresponding height. Based on this data, 
a student finds a relationship between the 
height (y) and the forehand length(x) as  
y = ax + b, where a, b are constants.� [PTA - 4]

Length ‘x’ of  
forehand (in cm) Height ‘y’ (in inches)

35 56

45 65

50 69.5

55 74

	 (i)	 Check if this relation is a function.
	 (ii)	 Find a and b.
	 (iii)	 �Find the height of a person whose 

forehand length is 40 cm.
	 (iv)	 �Find the length of forehand of a person 

if the height is 53.3 inches.

Sol.	 Given relation is  y = ax + b � ...(1)
	 (i)	 The given ordered pairs are 
			  R = { (35, 56) (45, 65) (50, 69.5) (55, 74)}

35

45

50

55

56

65

69.5

74

x y
Since all the elements 
of x are related to some 
elements of y, the given 
relation is a function.

	 (ii)	� Consider any two ordered pairs (35, 56) 
and (45, 65) 

			  Substitute 
x     y

(35, 56)  in y = ax + b we get,

			  56	 =	 a (35) + b� ... (1)

			�  Similarly substitute (45, 65) in y = ax + b, 
we get

			  65	 =	 a (45) + b � ...(2)
		 (2) →	 65	 =	 45a + b � ....(2)
		 (1) →	 56	 =	 35a + b� ...(3)
	 Substituting, 	 9	 =	 10a 

	 ⇒	  a	 =	
9

10
 = 0.9

	 Substituting a = 0.9 in (1) we get
	  	 56	 =	 35 (0.9) + b 

	 ⇒ 	 56	 =	 31.5 + b 
	 ⇒ 	 b	 =	 56 – 31.5 = 24.5
			  Since y	 =	 ax + b
			  We get y	 =	 0.9x + 24.5
	 (iii)  When the length of the forehand x = 40 cm,
			  y	 =	 0.9 (40) + 24.5
	 ⇒	 y	 =	 36 + 24.5 = 60.5 inches
	 ∴ The required height of the person is 60.5 

inches.
	 (iv)  �When the length of the forehand y = 53.3 

inches,
			  53.3	 =	 0.9x + 24.5
� [ y = 0.9x + 24.5]
	 ⇒ 	53.3 – 24.5	 =	 0.9x	 ⇒	28.8	=	0.9x

	 ⇒	 x	 =	
28 8
0 9

10
10

.
.

´
´ ⇒ x =288

9
= 32 cm

–        –      –
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8  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

EXERCISE 1.4

1.	 Determine whether the graph given below 
represent functions. Give reason for your 
answers concerning each graph.

 (i)   (ii)  

(iii)  (iv)

Y

Y′

Y′ Y′

Y′

X′

X′ X′

X′XO

Y

XO

O

O

Y

X X

Y

Sol.	

 (i)   (ii)  

(iii)  (iv)

Y

Y′

Y′ Y′

Y′

X′

X′ X′

X′XO

Y

XO

O

O

Y

X X

Y

	 (i)	� It is not a function. The graph meets the 
vertical line at more than one points.

	 (ii)	� It is a function as the curve meets the 
vertical line at only one point.

	 (iii)	� It is not a function as it meets the vertical 
line at more than one points.

	 (iv)	� It is a function as it meets the vertical line 
at only one point.

2.	 Let f :A→ B be a function defined by f (x) = 
x
2
−1, 

where A ={2, 4, 6, 10, 12}, B = {0, 1, 2, 4, 5, 9}. 

Represent f by� [Govt. MQP - 2019]
	 (i)	 set of ordered pairs; 
	 (ii)	 a table; 
	 (iii)	 an arrow diagram;
	 (iv)	 a graph
Sol.	 	f : A → B�

	 A = {2, 4, 6, 10, 12}, B = {0, 1, 2, 4, 5, 9}

  			  f (x)	 =	
x
2

1− , 	 	 f (2)= 2
2

1−  = 0

		   	 f (4)	 =	
4
2

1−  = 1	 	 f (6) = 6
2

1−  = 2

			  f (10)	 =	
10
2

1−  = 4	 	 f (12) = 
12
2

1−  = 5

	 (i)	 Set of ordered pairs
			  ={(2, 0), (4, 1), (6, 2), (10, 4), (12, 5)}
	 (ii)	 a table

x 2 4 6 10 12
f (x) 0 1 2 4 5

	 (iii)	 an arrow diagram;

			

2

4

6

10

12

0

1

2

4

5

9

A Bf

	 (iv)	 a graph

		

1

0
1

−1
−1

2

2

−2

−2

3

(2,0)

(4,1)

(6,2)

(10,4)

(12,5)

3

4

4

5

5

6

  6 7 8 9 10 11 12 13

x′ x

y

y′

3.	 Represent the function f ={(1, 2),(2, 2),(3, 2), 
(4, 3), (5, 4)} through 

	 (i)	 an arrow diagram 
	 (ii)	 a table form 
	 (iii)	 a graph
Sol.	 f = {(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)}

	 (i)		 An arrow diagram.

1

2

3

4

5

2

3

4

f
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9 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

	 (ii)	 a table form

x 1 2 3 4 5
f (x) 2 2 2 3 4

	 (iii)	 A graph representation.

	

1

1 2 3 4 5 60
−1

−1

2

−2

−2

3

4

5

6

x′ x

y

y′

(1, 2)

(2, 2)
(3, 2)

(4, 3)

(5, 4)

4.	 Show that the function f : N → N defined by  
f (x) = 2x – 1 is one - one but not onto.

Sol.	   f : N → N
			  f (x)	 =	 2x – 1
			  N	 =	 {1, 2, 3, 4, 5,...}
			  f (1)	 =	 2(1) – 1 = 1
			  f (2)	 =	 2(2) – 1 = 3
			  f (3)	 =	 2(3) – 1 = 5
			  f (4)	 =	 2(4) – 1 = 7
			  f (5)	 =	 2(5) – 1 = 9

	
1

2

3

4

5

1

3

5

7

9

N(x) N(f (x))f

..
....

 �In the figure, for 
different elements 
in x, there are 
different images in 
f (x).

	 Hence f : N → N is a one-one function.
	 A function f : N → N is said to be onto function 

if the range of f is equal to the co-domain of f.
	 Range = {1, 3, 5, 7, 9, ...} 
	 Co-domain = {1, 2,3,..}
	 But here the range is not equal to co-domain. 

Therefore it is one-one but not onto function.

5.	 Show that the function  f : N → N defined by 
 f (m) = m2 + m  + 3  is one - one function.

Sol.	 	f : N	 →	N
			  f (m)	 =	 m2 + m + 3

			  N	 =	 {1, 2, 3, 4, 5, . . .}, m ∈ N

			  f (m)	 =	 m2 + m + 3

			  f (1)	 =	 12 + 1 + 3 = 5

			  f (2)	 =	 22 + 2 + 3 = 9

			  f (3)	 =	 32 + 3 + 3 = 15

			  f (4)	 =	 42 + 4 + 3 = 23

1

2

3

4

5

9

15

23

N N
fX f (x)

		 In the figure, for different elements in the (X) 
domain, there are different images in f (x). Hence 
f : N → N is a one to one but not onto function as 
the range of f is not equal to co-domain. 

	 Co-domain = N
	 Range = {5, 9, 15, 23}
	 Hence it is proved.
6.	 Let A ={1, 2, 3, 4} and B = N. Let f : A→ B be 

defined by f(x) = x3 then,� [Hy - 2019]
	 (i)	 find the range of f 
	 (ii)	 identify the type of function
Sol.	   	      A	 =	 {1, 2, 3, 4}

			  B	 =	 N

	 	f : A → B, f (x) = x3

	 (i)	 f (1)	 =	 13 = 1

			  f (2)	 =	 23 = 8

			  f (3)	 =	 33 = 27

			  f (4)	 =	 43 = 64

	 (ii)		 The range of f = {1, 8, 27, 64,....}
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10  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

	 (iii)	

1
2
3
4
5
6
7
8...
27...
64...

1

2

3

4

N

A

			  Here co-domain = N = {1, 2, 3 ...}
			  Range = {1, 8, 27, 64}
			�  Different elements have different images 

and co-domain ≠  Range.
			�  ∴The given function is one - one into 

function.

7.	 In each of the following cases state whether 
the function is bijective or not. Justify your 
answer.

	 (i)	 f : R → R defined by f(x) = 2x + 1
	 (ii)	 f : R → R defined by f(x) = 3 – 4x2

Sol.	 Given  f : R → R is defined by f (x) = 2x + 1
		  (i)	When x	 =	 1,
			  f (1)	 =	 2(1) + 1 = 3
		  	  f (2)	 =	 2(2) + 1 = 5
		   	 f (0)	 =	 2(0) + 1 = 1
			  f (–1)	 =	 2(–1) + 1 = –2 + 1 = – 1

		   	 f 
1
2

æ
è
ç

ö
ø
÷ 	 =	 2 

1
2

æ
è
ç

ö
ø
÷  + 1 = 1 + 1 = 2 and so on

12

.

.

-4

-3

-2

-1

0

1

2

3
.
.
.

.

.

-1

0

1

2

3

4
.
.
.

R R

1

2

Here, different 
element in domain 
have different 
images in B and 
Co-domain
= Range = R.
∴ f is a bijective 
function.

	 (ii)  Given f : R → R is defined by f (x) = 3 – 4x2

			  f (1)	 =	 3 – 4(12) = 3 – 4 (1)
				   =	 3 – 4 = –1
			  f (2)	 =	 3 – 4(22) = 3 – 4 (4)
				   =	 3 – 16 = –13
			  f (0)	 =	 3 – 4(0)2 = 3 – 0 = 3
		   	 f (–1)	 =	 3 – 4(–1)2 = 3 – 4(1)
				   =	 3 – 4 = –1

12

.

.

-13
.
.

-1

0
1

2

3
.
.
.

.

.

-1

0

1

2
.
.
.

R R

Here, different 
element in domain 
do not have 
different images in 
B. Since 1 and –1 
are related to –1.
∴ f is not one - one.
Hence, f is not a 
bijective function.

8.	 Let A = {−1, 1}and B ={0, 2}. If the function 
f :A → B defined by f(x) = ax + b is an onto 
function? Find a and b.

Sol.	 Given A = {–1, 1}, B = {0, 2} and f : A → B is 
defined  by f (x) = ax + b is an onto function.

			

−1

  1

0

2

A B

			  f (–1)	 =	 0
	 ⇒	 a(–1) + b	 =	 0� [ Sub x = –1, y = 0
� in y = ax + b]
	 ⇒ 	 – a + b	 =	 0� ... (1)
			  Also f (1)	 =	 2
	 ⇒	 a(1) + b	 =	 2 � [ Sub x = 1, y = 2
� in y = ax + b]
	 ⇒ 	 a  + b	 =	 2 � ...(2)
	 (1) ⇒	 – a  + b	 =	 0
	 Adding,	 2b	 =	 2

	 ⇒	 b	 =	
2
2

= 1

	 Substituting	 b	 =	 1 in (2) we get
 			  a + 1	 =	 2	 ⇒ a = 2 – 1 = 1
			  ∴ a	 =	 1, b = 1
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11 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

9.	 If the function f is defined by  

f (x) = 
x x

x
x x

+ 2 1
2 1 1

1 3 1

;
;
;

>
− ≤ ≤

− − < < −









 find the values of

	 (i)	 f(3) 		 (ii)	 f(0) 
	 (iii)	 f(−1.5) 	 (iv)	 f (2) + f(−2)
Sol.	 (i)	 f (3) ⇒ f (x) = x + 2 ⇒ 3 + 2 = 5�[ x = 3]
	 (ii)	 f (0)	⇒	 2 � [ 0 ∈– 1≤ x ≤1]
	 (iii)	 f (–1.5) 	= x – 1= –1.5 – 1 = –2.5
	 (iv)	 f (2) + f (–2)
			  f (2)	 =	 2 + 2 = 4 � [ f(x) = x + 2]
			  f (–2)	 =	 –2 – 1 = –3 � [ f(x) = x – 1]
			  f (2) + f (–2)	 =	 4 – 3 = 1

10.	 A function f : [−5, 9]→ R is defined as follows:

	 f (x) = 

6 +1 5 2

5 1 2 6
3 4 6 9

2

x x

x x
x x

;

;
;

− ≤ <

− ≤ <
− ≤ ≤









	 Find (i)	 f(−3) + f(2) 	(ii)	 f (7) – f(1) [PTA - 4]

	 (iii)	 2f(4) + f(8) 	 (iv)	2 2 6
4 2

f f
f f

( ) ( )
( ) ( )

− −
+ −

[PTA- 4]

Sol.	 	 f : [–5, 9] → R
	 (i)	 f(−3) + f(2)
			  f (–3)	 =	 6x + 1= 6(–3) + 1 = –17
		   	 f (2)	 =	 5x2 – 1 = 5(22) – 1 = 19
			  \ f (–3) + f (2)	 =	 –17 + 19 = 2
	 (ii)	 f (7) – f(1) 
			  f (7)	 =	 3x – 4 = 3(7) – 4 = 17
			  f (1)	 =	 6x + 1 = 6(1) + 1 = 7
			  f (7) – f (1)	 =	 17 – 7 = 10
	 (iii)		 2f (4) + f (8)
			  f (4)	 =	 5x2 – 1 = 5 × 42 – 1 = 79
			  f (8)	 =	 3x – 4 = 3 × 8 – 4 = 20
			  ∴ 2f (4) + f (8)	 =	 2 × 79 + 20 = 178
	

(iv)	 2 2 6
4 2

f f
f f

( ) ( )
( ) ( )

− −
+ −

			  f (–2)	 =	 6x + 1 = 6(–2) + 1 = –11
			  f (6)	 =	 3x – 4 = 3(6) – 4 = 14
			  f (4)	 =	 5x2 – 1 = 5(42) – 1 = 79
			  f (–2)	 =	 6x + 1 = 6(–2) + 1 = –11

			
2 2 6

4 2
f f

f f
( ) ( )

( ) ( )
− −

+ −
	 =	

2 11 14
79 11
( )

( )
− −

+ −
 = − −22 14

68

				   =	
−36
68

 = 
−9
17

11.	 The distance S an object travels under the 
influence of gravity in time t seconds is given by 

S(t) = 
1
2

gt 2+ at + b where, (g is the acceleration 

due to gravity), a, b are constants. Verify whether 
the function S (t)is one-one or not.� [PTA - 3]

Sol.	 			 S(t)	 =	
1
2

gt2 + at + b
		 Let t be 1, 2, 3, . . ., seconds.

			  S(1)	 =	
1
2 g(12) + a(1) + b= 

1
2

g + a + b

			  S(2)	 =	
1
2

g(22) + a(2) + b

				   =	 2g + 2a + b
	 Yes, for every different values of t, there will 

be different values as images. And there will be 
different pre-images for the different values of 
the range. Therefore it is one-one function.

12.	 The function ‘t’ which maps temperature in 
Celsius (C) into temperature in Fahrenheit 
(F) is defined by t(C)= F where F = 

9
5
C +32. 

Find,
	 (i)	 t(0)	 	 [PTA - 1]
	 (ii)	 t(28)	
	 (iii)	 t(–10)
	 (iv)	 the value of C when t(C) = 212� [PTA - 1]
	 (v)	 �the temperature when the Celsius value 

is equal to the Fahrenheit value.� [PTA - 1]
Sol.	 (i)		       t(0)	=	 F

		  			   F	 =	
9
5

(C)+ 32 = 
9
5 (0) + 32 = 32°F

	 (ii)	 t(28)	 =	 F = 9
5

(28) + 32 = 
252
5

 + 32

				   =	 50.4 + 32 = 82.4°F

	 (iii)	 t(–10)	 =	 F = 
9
5

(–10) + 32 = 14°F

	 (iv)	 t(C)	 =	 212

			 i.e
9
5

(C) + 32	 =	 212 ⇒ 
9
5

 C = 212 – 32 = 180

			
9
5

C	 =	 180 ⇒ C = 
180 5

9

20
´

 = 100°C

			  C	 =	 100°C.
	 (v)     	when C	=	 F

			
9
5

C + 32	 =	 C

			  32	 =	 C – 
9
5

 C

			  32	 =	 C 1 9
5

-æ
è
ç

ö
ø
÷
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12  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

			  32	 =	 C
5 9

5
-æ

è
ç

ö
ø
÷

			  32	 =	 C -æ
è
ç

ö
ø
÷

4
5

			  C	 =	 32 5
4

8
´

-

			  C	 =	 – 40°

EXERCISE 1.5

1.	 Using the functions f and g given below, find 
fog and gof . Check whether fog = gof .

	 (i)	 f(x) = x − 6, g(x) = x2

	 (ii)	 f (x) = 
2
x

, g(x) = 2x2 − 1

	 (iii)	 f (x) = 
x + 6

3
, g(x) = 3 − x

	 (iv)	 f(x) = 3 + x, g(x) = x − 4� [Govt. MQP - 2019]

	 (v)	 f(x) = 4x2 − 1, g(x) = 1 + x
Sol.	 (i)   Given f(x)	 =	 x − 6, g(x) = x2

			  fog(x)	 =	 f(g(x)) = f(x2)� [ g (x) = x2]
				   =	 x2 – 6
			  [In f(x)	 =	 x – 6, Replace x by x2]   ...(1)
			  gof (x)	 =	 g(f(x)) = g(x – 6) 
� [ f (x) = x – 6]	

			  =	 (x – 6)2

� [In g(x) = x2, Replace x by x – 6] 
				   =	 x2 – 12x + 36
� [ (a – b)2 = a2 – 2ab + b2]   ... (2)
			 From (1) and (2), 
			  fog(x)	 ≠	 gof (x)

(ii)			 Given f (x)	 =	 2
x

, g(x) = 2x2 − 1

			  fog(x)	 =	 f (g(x)) = f (2x2 – 1) 
� [ g (x) = 2x2 – 1]
				   =	 2

2 12x −

� [In f (x) = 
2
x

. Replace x by 2x2 – 1]  ...(1)

			  gof(x)	 =	 g(f(x)) = g
2
x





 � [ f (x) =

2
x ]

				   =	 2 2 1
2

x






−

� [In g(x) = 2x2 – 1, Replace x by  
2
x
]

		
		  =	 2 4 12x







− = 
8 12x

− � ...(2)

			 From (1) and (2), 
			  fog(x)	 ≠	 gof (x)

(iii)			 Given f (x)	 =	 x + 6
3

, g(x) = 3 − x

			  fog(x)	 =	 f(g(x)) = f(3 – x)�[ g (x) = 3 – x]

				   =	 3 6
3

− +x

� [In f(x) = x + 6
3

, Replace x by 3 – x]

				   =	 9
3
− x � ...(1)

			  gof (x)	 =	 g(f(x)) = g x +





6
3

�
[ f(x) = x + 6

3
]

				   =	 3 – x +





6
3

� [In g(x) = 3 – x, Replace x by x + 6
3

]

				   =	
9 6

3
- -x

 = 
3

3
− x

� ...(2)

			 From (1) and (2), 
			  fog(x)	 ≠	 gof (x) 
(iv)			 Given f(x)	 =	 3 + x, g(x) = x − 4
			  fog(x)	 =	 f (g(x)) = f (x – 4)�[ g (x) = x – 4]
				   =	 3 + (x – 4)
� [In f(x) = 3 + x, Replace x by x – 4]
				   =	 3 + x – 4 = x – 1� ... (1)
			  gof(x)	 =	 g (f(x)) = g (3 + x) 
				   =	 3 + x – 4� [ f (x) = 3 + x]
� [In g(x) = x – 4, Replace x by 3 + x]
				   =	 x – 1� ...(2)
	 From (1) and (2),
			  fog(x)	 =	 gof(x)
(v)			 Given  f(x)	 =	 4x2 − 1, g(x) = 1 + x
			  fog(x)	 =	 f (g(x)) = f (1 + x)�[ g (x) =1 +  x]
				   =	 4(1 + x)2 – 1
� [In f(x) = 4x2 – 1, Replace x by 1 + x]
				   =	 4(1 + x2 + 2x) – 1= 4 + 4x2 + 8x – 1
				   =	 4x2 + 8x + 3� ...(1)
			  gof(x)	 =	 g (f(x)) = g (4x2 – 1)
� [ f (x) = 4x2 – 1]
				   =	 1 + 4x2 – 1 
� [In g(x) = 1 + x, Replace x by 4x2 – 1]
				   =	 4x2� ...(2)
	 From (1) and (2),
			  fog(x)	 ≠	 gof (x)
2.	 Find the value of k, such that fog = gof
	 (i)	 f(x) = 3x + 2, g(x) = 6x − k� [Hy - 2019]

	 (ii)	 f(x) = 2x − k, g(x) = 4x + 5
Sol.	 (i) Given f(x) = 3x + 2, g(x) = 6x – k and 
			  fog	 =	gof
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13 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

			  fog(x)	 =	 f(g(x)) = f(6x – k)
� [ g (x) = 6x – k]
				   =	3(6x – k) + 2
� [In f(x) = 3x + 2, Replace x by 6x – k]
				   =	18x – 3k + 2� ...(1)
		 Now	 gof (x)	 =	g(f(x)) = g(3x + 2)
� [ f (x) = 3x + 2]
				   =	6(3x + 2) – k
� [In g(x) = 6x – k, Replace x by 3x + 2]
				   =	18x + 12 – k� ...(2)
	 Also it is given that fog = gof
⇒	 18 3 2x k− + 	=	 18 12x k+ −
� [Using (1) and (2)]
⇒			  –3k + 2	 =	12 – k
⇒			  –3k + k	 =	12 – 2
⇒			  –2k	 =	12 – 2
⇒			  –2k	 =	10 ⇒ k = 

10
2-

= –5
			  ∴ k	 =	–5
	 (ii)	 f (x)	 =	2x – k, g(x) = 4x + 5
			  fog(x)	 =	 f(g(x)) = f(4x + 5)
� [ g (x) = 4x + 5]
				   =	2(4x + 5) – k
� [ In f(x) = 2x – k, Replace x by 4x + 5]
				   =	8x + 10 – k� ...(1)
			  gof (x)	 =	g(f(x)) = g(2x – k)
� [ f (x) = 2x – k]
				   =	4(2x – k) + 5
� [In g(x) = 4x + 5, Replace x by 2x –k]
				   =	8x – 4k + 5� ...(2)
		 Given that 
			  fog(x)	 =	gof(x)
	 ⇒	8 10x k+ − 	 =	 8 4 5x k− +
	 [From (1) and (2)]
	 ⇒	 10 – k	 =	–4k + 5	 ⇒ –k + 4k = 5 – 10

	 ⇒	 3k	 =	–5		 ⇒	  k = −5
3

3.	 If f(x) = 2x − 1, g(x) = 
x + 1

2
, show that  

fog = gof = x.

Sol.	 Given f (x) = 2x – 1, g(x) = 
x +1

2
			  S.T fog	 =	 gof = x			

fog(x)	 =	 f (g(x))= f x +





1
2

� [ g (x) = 
x +1

2
]

			  	 =	 2 1
2

1x +





−

� [ In f(x) = 2x – 1, Replace x by  
x +1

2
]

				   =	 x + 1 – 1 = x� ...(1)
	 Now,
			  gof(x)	 =	 g (f(x)) = g(2x – 1)
� [ f (x) = 2x – 1]

				   =	
2 1 1

2
x - +

� [In g(x) =  
x +1

2
, Replace x by 2x – 1]

				   =	
2
2
x

 = x� ...(2)

	 From (1) and (2)
			  fog (x)	 =	 gof (x) = x	 Hence proved.

4.	 If f (x) = x2 − 1, g(x) = x − 2 find a, if  
gof(a) = 1.� [PTA - 2]

Sol.	 Given  f (x) = x2 – 1, g(x) = x – 2
			  gof (x)	 =	 g(f(x)) = g (x2 – 1)
� [ f (x) = x2 – 1]
				   =	 x2 – 1 – 2
� [ In g(x) = x – 2, Replace x by x2 – 1]
				   =	 x2 – 3
			  ∴gof(a)	 =	 a2 – 3 � [Replacing x by a]
	 Given that gof (a)	 =	 1
	 ⇒ 	 a2 – 3	 =	 1 ⇒ a2 = 4
	 ⇒ 	 a	 =	 ± 4  ⇒ a = ± 2
5.	 Let A,B,C ⊆ N and a function f : A→ B be 

defined by f(x) = 2x + 1 and g : B → C be 
defined by g(x) = x2. Find the range of fog and 
gof.

Sol.	 	   Given f(x)	 =	 2x + 1 and
			  g(x)	 =	 x2

			  fog(x)	 =	 f(g(x)) = f(x2) � [ g (x) = x2]
				   =	 2x2 + 1 
� [In f (x) = 2x + 1, replace x by x2]
			  ∴ fog (x)	 =	 2x2 + 1� ... (1)
			  gof(x)	 =	 g(f(x)) = g(2x + 1)
� [ f (x) = 2x + 1]
				   =	 (2x + 1)2

� [In g(x) = x2, replace x by 2x + 1]
� [ (a + b)2 = a2 + 2ab + b2]
	 Now f : A → B, and g : B → C
	 ∴ fog : C → A and A, B, C ⊆ N
	 ∴ Range of fog is
			  {y/y	 =	 2x2 + 1, x ∈ C} and 
	 Range of gof is
			  {y/y	 =	 (2x + 1)2, x ∈N}�[ gof : A → C]
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6.	 If f (x) = x2 − 1 . Find (i) fof, (ii) fofof
Sol.	 (i)  fof
	 		  fof (x)	 =	 f (f(x)) = f(x2 – 1)
� [ f (x) = x2 – 1]
				    =	 (x2 – 1)2 – 1 
� [In f(x) = x2–1, replace x by x2 – 1]
				    =	 x4 – 2x2 + 1  – 1  
� [ (a – b)2 = a2 – 2ab + b2 Here a = x2, b = 1]
			   fof (x)	 =	 x4 – 2x2� ... (1)
	 (ii)		  fofof	 =	 fo[fof (x)] 
				    =	 f o [x4 – 2x2]� [Using (1)]
				    =	 f(x4 – 2x2)
				    =	 (x4 –2x2)2 – 1
� [In f(x) = x2–1, replace x by x4 – 2x2]
		  ∴ fofof (x)	 =	 x8 – 4x6 + 4x4 – 1
� [ (a – b)2 = a2 – 2ab + b2 Here a = x4, b = –2x2]
7.	 If f : R → R and g : R → R are defined by  

f(x) = x5 and g(x) = x4 then check if f, g are 
one-one and fog is one-one?� [PTA - 6]

Sol.	 	Given f (x)	 =	x5

			  g(x)	 =	 x4

		  	 fog (x)	 =	 f(g(x)) = f (x4) � [ g (x) = x4]
				   =	 (x4)5[In f(x) = x5, replace x by x4]
				   =	 x20

		  	∴ fog (x)	 =	 x20

		 Now, fog (1) = 120 = 1
	 and fog (–1) = (–1)20 = 1[ 20 is an even number]
	 ∴ Two elements 1 and –1 have same image as 1.
         ∴ fog (x) is not one-one.

8.	 Consider the functions f(x), g(x), h(x) as given 
below. Show that (fog)oh = fo(goh) in each 
case.

	 (i)	 f(x) = x −1, g(x) = 3x + 1 and h(x) = x2

	 (ii)	 f(x) = x2, g(x) = 2x and h(x) = x + 4
	 (iii)	 f(x) = x − 4, g(x) = x2 and h(x) = 3x − 5
� [PTA - 2]

(i)  Given f(x) = x −1, g(x) = 3x + 1 and h(x) = x2	

Sol.	 	Consider f og(x) = f(g(x)) = f (3x + 1)
� [ g (x) = 3x + 1]
				   =	 3x + 1  – 1
� [In f (x) = x – 1, replace x by 3x + 1]
			  ∴ fog	 =	 3x
			  LHS	 =	 (fog)h = fog (h(x))
				   =	 fog (x2)� [ h (x) = x2]
				   =	 3x2� [In fog = 3x, replace x by x2]
		  	 RHS	 =	 fo(goh) =	 f (g (h(x))

				   =	 f (g(x2))� [ h (x) = x2]
				   =	 f(3x2 + 1)
� [In g(x) = x – 1, replace x by x2]
				   =	 3x + 1  – 1
� [In f(x) = 3x + 1, replace x by 3x2 + 1]
				   =	 3x2� ... (2).

			  ∴ LHS	 =	 RHS
	 [From (1) and (2)]		  Hence proved.
(ii)	 Given f(x) = x2, g(x) = 2x, h(x) = x + 4
	 Consider fog(x) =	 f(g(x)) = f(2x)� [ g (x) = 2x]
				   =	 (2x2) [In f(x) = x2, replace x by 2x]
				   =	 4x2

	 LHS (fog)oh	 =	 fog (h (x))
				   =	 fog  (x + 4)� [ h (x) = x + 4]
				   =	 4(x + 4)2 
� [In fog = 4x2, replace x by x + 4]
				   =	 4(x2 + 8x + 16)
� [ (a + b)2 = a2 + 2ab + b2. Here a = x, b = 4]
				   =	 4x2 + 32x + 64� ... (1)
			  RHS	 =	 fo (goh) = f (g (h(x))
				   =	 f (g (x + 4)) � [ h (x) = x + 4]
				   =	 f (2 (x + 4))
� [In g (x) = 2x, replace x by x + 4]
				   =	 f (2x + 8)  = (2x + 8)2

� [In f(x) = x2, replace x by 2x + 8]
				   =	 4x2 + 32x + 64� ...(2)
� [ (a + b)2 = a2 + 2ab + b2. Here a = 2x, b = 8]
			  LHS	 =	 RHS
	 From (1) and (2)		  Hence proved.
(iii)	 f (x) = x – 4, g(x) = x2, h(x) = 3x – 5
	 Consider
			  fog(x)	 =	 f(g(x)) = f (x2)� [ g (x) = x2]
				   =	 x2 – 4
� [In f(x) = x – 4, replace x by x2]
			  LHS	 =	 (fog)oh
				   =	 (fog)(h (x))= fog (3x – 5)
� [ h(x) = 3x –5]
				   =	 (3x – 5)2 – 4
� [In fog (x) = x2 – 4, replace x by 3x – 5]
				   =	 9x2 – 30x + 25 – 4
� [ (a – b)2 =a2 – 2ab + b2 Here a = 3x, b = 5] 
				   =	 9x2 – 30x + 21� ...(1)
			  RHS	 =	 fo(goh) (x) = f (g (h (x))
				   =	 f (g (3x – 5) � [ h(x) = 3x –5]
			  	 =	 f (3x – 5)2 
� [In g (x) = x2, replace x by 3x – 5]
				   =	 (3x – 5)2 – 4
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� [In f (x) = x – 4, replace x by 3x – 5]
				   =	 9x2 – 30x + 25 – 4
� [ (a – b)2 =a2 – 2ab + b2 Here a = 3x, b = 5]
				   =	 9x2 – 30x + 21� ...(2)
	 From (1) and (2)
			  LHS	 =	 RHS	 Hence proved.
9.	 Let f ={(−1, 3),(0, −1),(2, −9)} be a linear 

function from Z into Z . Find f(x).
Sol.	 Given f = {(–1, 3), (0, –1), (2, –9)} is a linear 

function from Z into Z.
	 Since f is a linear function, let y = ax + b be the 

linear function which is of degree one.
	 Sub (–1, 3) in y = ax + b, we get
			   3	 =	 a (–1) + b ⇒ – a + b = 3� ... (1)
	 Sub (0, –1) in y = ax + b, we get
			  –1	 =	 a (0) + b ⇒ – 1 = b  ⇒ b = –1
	 Sub b = –1 in (1) we get,
			  –a – 1	 =	 3 ⇒ – a = 3 + 1 = 4
	 ⇒	 a	 =	 –4
	 Sub a = –4, b = –1 in y = ax + b we get,
			  y	 =	 –4x – 1
	 ∴ The required linear function is – 4x – 1.

10.	 In electrical circuit theory, a circuit C(t) 
is called a linear circuit if it satisfies the 
superposition principle given by C(at1 + bt2) 
= aC(t1) + bC(t2) , where a,b are constants. 
Show that the circuit C(t) = 3t is linear.

Sol.	 �Given C(at1 + bt2) = a.c (t1) + b.c (t2) 
	 Let C(t)	 =	 3t
	 LHS	 =	 C (at1 + bt2) = 3 (at1 + bt2)
		  =	 3at1 + 3bt2� ... (1)
	 RHS	 =	 a.c(t1) + b.c (t2) = a.3t1 + b.3t2
� [ c(t1) = 3t1 and c(t2) = 3t2]
		  =	 3at1 + 3bt2� ... (2)
			  LHS	 =	 RHS
	 From (1) and (2)
		 Hence C(t)	 =	 3t  is linear function.

EXERCISE 1.6

Multiple choice questions.

1.	 If n(A× B) = 6 and A = {1, 3} then n(B) is
	 (A)	 1	 (B)	 2	 (C)	 3	 (D)	 6
� [Ans. (C)  3]
Hint: 			 If n(A × B)	 =	 6

			  A	 =	 {1, 1}, n(A) = 2
			  n(B)	 =	 3

2.	 A={a, b, p}, B = {2, 3}, C = {p, q, r, s} then 
n[(A∪C) × B] is� [PTA - 3]

	 (A)	 8 	 (B)	 20 	 (C)	 12	 (D)	 16
� [Ans. (C)  12]
Hint: 		  A	 =	 {a, b, p}, B = {2, 3}, 

	 C	 =	{p, q, r, s}
	 n (A ∪ C) × B
	 A ∪ C	 =	{a, b, p, q, r, s}
	 (A ∪ C) × B	 =	{�(a, 2), (a, 3), (b, 2), (b, 3), (p, 2),  

(p, 3), (q, 2), (q, 3), (r, 2), (r, 3),  
� (s, 2), (s, 3}

	 n [(A ∪ C) × B]	 =	12

3.	 If A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and  
D = {5, 6, 7, 8} then state which of the following 
statement is true.� [Sep.- 2020]

	 (A)	 (A × C) ⊂ (B × D)
	 (B)	 (B × D) ⊂ (A × C)
	 (C)	 (A × B) ⊂ (A × D)	
	 (D)	 (D × A) ⊂ (B × A)
� [Ans. (A)  (A × C) ⊂ (B × D)]
Hint: 		 A	 =	 {1, 2}, B = {1, 2, 3, 4}, 

			  C	 =	{5, 6}, D = {5, 6, 7, 8}
			  A × C	 =	{(1, 5), (1, 6), (2, 5), (2, 6)}
			  B × D	 =	{�(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6),  

(2, 7), (2, 8), (3, 5), (3, 6), (3, 7), 
(3, 8)}

	 \ (A × C) ⊂ B × D 	 It is true.
4.	 If there are 1024 relations from a set  

A = {1, 2, 3, 4, 5} to a set B, then the number 
of elements in B is� [PTA - 2]

	 (A)	 3	 (B)	 2	 (C)	 4	 (D)	 8
� [Ans. (B)  2]
Hint: 		  n(A)	 =	5

			  n(B)	 =	x
			  n(A × B)	 =	1024 = 210

			  25x	 =	210	 ⇒ 5x = 10
	 ⇒	 x	 =	2
5.	 The range of the relation R= {(x, x2) |x is a 

prime number less than 13} is  [PTA - 4; Hy - 2019] 

	 (A)	 {2,3,5,7}		  (B)	 {2,3,5,7,11}
	 (C)	 {4,9,25,49,121}	 (D)	 {1,4,9,25,49,121}

� [Ans. (C)  {4, 9, 25, 49, 121}]
Hint: 	 R = {(x, x2)/x is a prime number <13}
			  The squares of 2, 3, 5, 7, 11 are 
			  {4, 9, 25, 49, 121}
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16  Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions 

6.	 If the ordered pairs (a + 2, 4) and (5,2a + b)
are equal then (a, b) is

	 (A)	 (2, –2)			  (B)	 (5,1)
	 (C)	 (2,3)			   (D)	 (3, –2)
� [Ans. (D)  (3, –2)]
Hint:  (a + 2, 4), (5, 2a + b) ⇒ a + 2 = 5 

			  a	 =	 3 ⇒ 2a + b = 4
		   	 6 + b	 =	 4 ⇒ b = –2
7.	 Let n(A) = m and n(B) = n then the total 

number of non-empty relations that can be 
defined from A to B is

	 (A)	 mn 	 (B)	 nm 	 (C)	 2mn –1	 (D)	 2mn

� [Ans. (C)  2mn–1]
Hint:  	 n(A)	 =	 m

			  n(B)	 =	 n
			  n(A × B)	 =	 m × n = mn
			  No. of relations	 =	 2n(A×B) = 2mn
	 Non-empty relations	 =	 2mn–1
8.	 If {(a, 8),(6, b)}represents an identity function, 

then the value of a and b are respectively
� [PTA - 1]
	 (A)	 (8,6)	 (B)	 (8,8)	 (C)	 (6,8)	 (D)	 (6,6)
� [Ans. (A)  (8,6)]
Hint: {(a, 8), (6, b)} ⇒ a = 8 ⇒ b = 6

9.	 Let A = {1, 2, 3, 4} and B = {4, 8, 9, 10}.  
A function f :A→ B given by f = {(1, 4), 
(2, 8),(3, 9),(4, 10)} is a� [PTA - 4]

	 (A)	 Many-one function
	 (B)	 Identity function
	 (C)	 One-to-one function
	 (D)	 Into function
� [Ans. (C)  One-to one function]
Hint:     A = {1, 2, 3, 4), B = {4, 8, 9, 10}

		
1

2

3

4

4

8

9

10

10.	 If f(x) = 2x2 and g (x) = 
1

3x , Then fog is
	 � [Hy - 2019]

	 (A)	
3

2 2x
	 (B)	

2
3 2x

	(C)	
2

9 2x
	 (D)	

1
6 2x

� [Ans. (C) 
2

9 2x
]

Hint: 	 f(x)	 =	 2x2 ⇒
	
g(x) = 

1
3x

			  fog	 =	 f(g(x)) = f  1
3x







 = 2 1
3

2

x






				   =	 2 × 
1

9 2x
 = 

2
9 2x

11.	 If f : A → B is a bijective function and if  
n(B) = 7 , then n(A) is equal to� [PTA - 2]

	 (A)	 7	 (B)	 49	 (C)	 1	 (D)	 14
� [Ans. (A) 7]
Hint:  In a bijective function, n(A) = n(B) ⇒ n(A) = 7

12.	 Let f and g be two functions given by  
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 7)}

	 g = {(0, 2),(1, 0), (2, 4), (−4, 2), (7,0)} then the 
range of fog is

	 (A)	 {0,2,3,4,5}		 (B)	 {–4,1,0,2,7}
	 (C)	 {1,2,3,4,5}		 (D)	 {0,1,2}
� [Ans. (D) {0, 1, 2}]
Hint: 	 gof	 =	 g(f (x)) 

			  fog	 =	 f (g (x))
				   =	 {(0, 2),(1, 0),(2, 4),(–4, 2),(7, 0)}
	 Range of fog	 =	 {0, 1, 2}

13.	 Let f(x)= 1 2+ x  then
	 (A)	 f(xy) = f (x).f(y)	 (B)	 f(xy) ≥ f(x).f(y)
	 (C)	 f(xy) ≤ f(x).f(y)	 (D)	 None of these
� [Ans. (C) f(xy) ≤ f(x).f(y)]

Hint: 	  1 1 12 2 2 2+ £ +( ) +( )x y x y
	 ⇒ f(xy) 7 f(x) . f(y)

14.	 If g = {(1, 1),(2, 3),(3, 5),(4, 7)} is a function 
given by g(x) = αx + b then the values of  
a and b are� [PTA - 6]

	 (A)	 (–1, 2)			  (B)	 (2, –1)
	 (C)	 (–1, –2)		  (D)	 (1,2)[Ans.(B) (2, –1)]
Hint: 	 g(x)	 =	 αx + β

			  α	 =	 2
			  β	 =	 –1
			  g(x)	 =	 2x – 1
			  g(1)	 =	 2(1) – 1 = 1
			  g(2)	 =	 2(2) – 1 = 3
			  g(3)	 =	 2(3) – 1 = 5
			  g(4)	 =	 2(4) – 1 = 7
15.	 f(x) = (x + 1)3 − (x − 1)3 represents a function 

which is� [PTA - 5; Qy - 2019]

	 (A)	 linear			   (B)	 cubic
	 (C)	 reciprocal		  (D)	 quadratic
� [Ans. (D) quadratic]
Hint: 	 f(x)	 =	 (x + 1)3 – (x – 1)3

				   =	 x3 + 3x2 + 3x + 1 – [x3 – 3x2 + 3x – 1]
	 = x x x x x x3 2 3 23 3 1 3 3 1+ + + − + − + = 6x2 + 2
	 It is a quadratic function.
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17 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

Unit Exercise - 1 

1.	 If the ordered pairs (x2− 3x, y2 + 4y) and (–2,5) 
are equal, then find x and y.

Sol.	 (x2 – 3x, y2 + 4y)	 =	 (–2, 5)
			  x2 – 3x	 =	 –2
			  x2 – 3x + 2	 =	 0
			  (x – 2)(x – 1)	 =	 0
		  	 x	 =	2, 1
		  	 y2 + 4y	 =	5
			  y2 + 4y – 5	 =	0
			  (y + 5)(y – 1)	 =	0
			  y	 =	–5, 1
2.	 The cartesian product A × A has 9 elements 

among which (–1, 0) and (0,1) are found. Find 
the set A and the remaining elements of A × A.

Sol.	 	 A	 =	 {–1, 0, 1}, B = {1, 0, –1}
			  A × B	 =	 {�(–1, 1), (–1, 0), (–1, –1), (0, 1), 

(0, 0), (0, –1), (1, 1), (1, 0),  
(1, –1)}

3.	 Given that f (x ) = x x− ≥
<






1 1

4 1x
. Find

	 (i) f(0) 	 (ii) f(3) 
	 (iii) f(a + 1) in terms of a.(Given that a 8 0 )
Sol.	 (i)	 f (0)	 =	4
	 (ii)	 f (3)	 =	 3 1−  = 2
	 (iii)	 f (a + 1)	 =	 a + −1 1  = a

4.	 Let A={9,10,11,12,13,14,15,16,17} and let  
f : A→ N be defined by f(n)= the highest prime 
factor of n∈A. Write f as a set of ordered pairs 
and find the range of f.

Sol.			  A	 =	{9, 10, 11, 12, 13, 14, 15, 16, 17}
			   f : A	 →	N
			   f (n)	 =	the highest prime factor of n ∈ A
			   f	 =	{�(9, 3), (10, 5), (11, 11), (12, 3), (13, 

13), (14, 7), (15, 5), (16, 2), (17, 17)}
			  Range	 =	{3, 5, 11, 13,7, 2, 17}= {2, 3, 5, 7, 11, 13, 17}

5.	 Find the domain of the function  

f(x) = 1 + 1 1 2− − x .

Sol.	 		 f (x)	 =	 1 1 1 2+ − − x
			 Domain of f (x)	 =	 {–1, 0, 1}

(x2 = 1, –1, 0, because 1 2− x  should be +ve, or 0)

2

–2	 –1
–5

+5	 –1

6.	 If f(x)= x2 , g(x) = 3x and h(x) = x − 2 . Prove 
that (f og)oh = fo(goh).

Sol.	 		 		  f (x)	 =	 x2

			  g(x)	 =	 3x
			  h(x)	 =	 x – 2
			   (fog)oh	 =	 x – 2
			   LHS	 =	 fo(goh)
			  fog	 =	 f(g(x)) = f(3x) = (3x)2 = 9x2

			  (fog)oh	 =	 (fog) h(x) = (fog) (x – 2)
		  		  =	 9(x – 2)2 = 9(x2 – 4x + 4)
				   =	 9x2 – 36x + 36� ...(1)
		  	 RHS	 =	 fo(goh)
		  	 (goh)	 =	 g(h(x)) = g(x – 2) 
				   =	 3(x – 2) = 3x – 6
			  fo(goh)	 =	 f (3x – 6) = (3x – 6)2

				   =	 9x2 – 36x + 36� ...(2)
			  (1)	 =	 (2)
			  LHS	 =	 RHS
		 (fog)oh = fo(goh) is proved.

7.	 Let A = {1, 2} and B = {1, 2, 3, 4} , C ={5, 6} and  
D = {5, 6, 7, 8} . Verify whether A×C is a 
subset of B×D?

Sol.	 		 A	 =	 {1, 2), B = {1, 2, 3, 4}

			  C	 =	 {5, 6}, D = {5, 6, 7, 8}

			  A × C	 =	 {�(1, 5), (1, 6), (2, 5), (2, 6)}

			  B × D	 =	 {�(1, 5), (1, 6), (1, 7), (1, 8),  
� (2, 5), (2, 6), (2, 7), (2, 8),  
� (3, 5), (3, 6), (3, 7), (3, 8),  
� (4, 5), (4, 6), (4, 7), (4, 8)}

		 (A × C) ⊂ (B × D)		 It is proved.

8.	 If f(x) = 
x
x

− 1
+ 1

 , x ≠ 1 show that f (f (x)) = −
1
x

 , 

provided x ≠ 0 .

Sol.	 	 f (x)	 =	 x
x

−
+

1
1

, x ≠ 1

	 		 f ( f (x))	 =	 f x
x

−
+







1
1

 = 

x
x
x
x

−
+







−

−
+







+

1
1

1

1
1

1

				   =	

x x
x

x x
x

− − −
+

− + +
+

1 1
1

1 1
1

( )

( )

= −2
2x

 = 
−1
x

	 Hence it is proved.
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9.	 The function f and g are defined by f(x) = 6x + 8;  

g(x) = 
x − 2

3
.

	 (i)	 Calculate the value of gg 1
2







	 (ii)	 �Write an expression for gf(x) in its 
simplest form.

Sol.	 	 f (x)	 =	 6x + 8

			  g(x)	 =	
x − 2

3
	 (i)	  gg(x)	 =	 g(g(x))
			

	 =	 g x −





2
3

 = 

x − −2
3

2

3
	

			  =	
x − − ×2 6

3
1
3

 = 
x − 8

9

			  gog 1
2







	 =	

1
2

8

9

−
= 1 16

2
1
9

− × = −15
18

 = 
−5
6

 

	 (ii)	 gof(x)	 =	 g(f(x)) = g(6x + 8)

				   =	
6 8 2

3
x + −

 = 
6 6

3
x +

				   =	
3 2 2

3
x +( )

= 2x + 2 = 2(x + 1)

10.	 Write the domain of the following real 
functions

	 (i)	 f (x) = 
2 + 1

9
x

x −
	�  [PTA - 6]

	 (ii)	 p (x) = −
+

5
4 12x

	 (iii)	 g(x) = x − 2 � [PTA - 6]
	 (iv)	 h(x) = x + 6
Sol.	 (i)	 f (x)	 =	

2 1
9

x
x

+
−

			�  The denominator should not be zero as the 
function is a real function.

			  \ The domain = R –{9}

	 (ii)		  p(x)	 =	
−

+
5

4 12x
			  The domain is R.

	 (iii)		 g(x)	 =	 x − 2
			  The domain = [2, ∝]
	 (iv)		 h(x)	 =	 x + 6
			  The domain is R.

PTA EXAM QUESTION & ANSWERS

1 MARK

1.	 If n(A) = p, n (B) = q then the total number of 
relations that exist between A and B is�[PTA -1]

	 (A)	 2p	 (B)	 2q	 (C)	 2p + q	 (D)	 2pq

� [Ans. (D) 2pq]
2.	 Given f(x) (– 1)x is a function from  to . 

Then the range of f is� [PTA - 3]

	 (A)	 {1}	 (B)	 	 (C)	 {1, –1}	(D)	 
� [Ans. (C){1, –1}]
3.	 The given diagram represents� [PTA - 6]

	 (A)	 an onto function� 2

4

6

5

4

2

18

15

	 (B)	 constant function
	 (C)	 an one-one function
	 (D)	 not a function
� [Ans. (D) not a function]
Hint:  4 has no image

2 MARKS
1.	 A relation ‘f ’ is defined by f(x) = x2 − 2 where,  

x ∈{–2, –1, 0, 3} (i) List the elements of f  
(ii) Is f a function?� [PTA - 1; Qy - 2019]

Sol.	 	 f(x)	 =	 x2 – 2 where x ∈ {–2, –1,0,3}
(i)	 f(–2)	 =	 (–2)2 –2 = 2;
	 f(–1)	 =	 (–1)2 –2 = – 1
	 f(0)	 =	 02–2 = – 2
	 f(3)	 =	 32 – 2 = 9 – 2 = 7
	∴ f	 =	 {(–2, 2), (–1, –1), (0, –2),(3,7)}
(ii)	� We note that each element in the domain 

of f has a unique image.
Therefore f is a function. 

2.	 A relation R is given by the set {(x, y)/y = x2 + 3, 
x∈{0,1,2,3,4,5}} Determine its domain and 
range.� [PTA - 2]

Sol.	 	 Domain	 =	 {0, 1, 2, 3, 4, 5}
			  x	 =	 0, y = 02 + 3 = 3
			  x	 =	 1, y = 12 + 3 = 4
			  x	 =	 2, y = 22 + 3 = 7
			  x	 =	 3, y = 32 + 3 = 12
			  x	 =	 4, y = 42 + 3 = 19
			  x	 =	 5, y = 52 + 3 = 28
		  	 Range	 =	 {3, 4, 7, 12, 19, 28}

3.	 Find k, if f(k)=2k −1 and fof(k) = 5.� [PTA - 4]

Sol.	 	 f (k)	=	 2k – 1
		  	Consider fo f (k)	=	 f (f (k)) = f (2k – 1)
� [ f (x) = 2k – 1]
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19 Sura’s ➠ X Std - Mathematics ➠ Chapter 1 ➠ Relations And Functions

				   =	 2(2k – 1) – 1
� [In f (k) = 2k – 1, replace k by 2k – 1]
		 	 	 =	 4k – 2 – 1 = 4k – 3
	 ⇒ 	 4k – 3	 =	 5 ⇒ 4k = 5 + 3 = 8

	 ⇒ 	 k	 =	
8
4

 = 2

			  ∴ k 	 =	 2
4.	 Let A = {1, 2, 3, ..., 100} and R be the relation 

defined as “is cube of” on A. Find the domain 
and range of R.� [PTA - 4]

Sol.	 	 R	 =	 {(1,1) (2,8), (3,27), (4, 64)}
			  Domain	 =	 {1, 2, 3, 4}
			  Range	 =	 {1, 8, 27, 64}
5.	 Let A = {1, 2, 3, 4} and B = . Let f : A → B 

be defined by f(x) = x2 (i) the range of f  
(ii) identify the type of function.� [PTA - 5]

Sol.	 f (1) =1; f (2) = 4; f (4) = 9; f (4) = 16
	 (i)	 Range	 =	 {1, 4, 9, 16}
		 (ii) One - one and into function
6.	 Let f  be a function from R to R defined by  

f(x) = 3x – 5 Find the values of a and b given 
that (a, 4) and (1, b) belong to f .� [PTA - 6]

Sol.	 	 f (x)	 =	 3x – 5 can be written as  
			  f	 =	 {(x, 3x – 5)| x ∈R} 

	 (a, 4) mean the image of a  is 4. 

	 That is,	 f (a)	 =	 4
			  3a – 5	 =	 4 ⇒ a = 3
	 (1, b) means the image of 1 is b. That is,
			  That is, f (1)	 =	 b ⇒ b = –2
			  3(1) – 5	 =	 b ⇒ b = –2
7.	 R = {(x, – 2), (–5, y) represents the identity 

function, find the values x and y.� [PTA - 6]
Sol.	 	 x	 =	  – 2 
			  y	 =	 – 5

5 MARKS

1.	 Let A = {1, 2, 3, 4} and B = {2, 5, 8, 11, 14} be 
two sets. Let f : A → B be a function given by  

f(x) = 3x – 1 Represent this function.� [PTA - 3]
	 (i)	 by arrow diagram� [Sep.-2020]
	 (ii)	 in a table form
	 (iii)	 as a set of ordered pairs
	 (iv)	 in a graphical form
Sol.	 Let A = {1, 2, 3, 4} ; B = {2, 5, 8, 11, 14};  

f(x) = 3x – 1
	 f(1) = 3(1) – 1 = 3 – 1 = 2; f(2) = 3(2) – 1 = 6 –1 = 5
	 f(3) = 3(3) –1 = 9 – 1 = 8; f(4) = 4(3) – 1 = 12 –1 = 11

	 (i)	 Arrow diagram
		�  Let us represent the function  f :A → B by 

an arrow diagram

1

2

3

4

2

5

8

11

14

A Bf

	 (ii)	 Table form
		�  The given function f can be represented in 

a tabular form as given below
x 1 2 3 4

f(x) 2 5 8 11
(iii) Set of ordered pairs
	 The function f can be represented as a set 

of ordered pairs as
	 f = (1, 2),(2, 5),(3, 8),(4, 11)
(iv) Graphical form

	

(1, 2)

(2, 5)

(4, 11)

(3, 8)

XX′
Y′

-1  1 2 3 4 5

Y

11

10

9

8

7

6

5

4

3

2

1

0

	 In the adjacent xy -plane the points
	 (1,2), (2,5), (3,8), (4,11) are plotted

2.	 Let A = {x ∈/ 0 < x < 5}, B = {x ∈/ 0 ≤ x ≤ 2}, 
C = {x ∈/ x < 3} then verify that A × (B ∩ C) 
= (A × B) ∩ (A× C) � [PTA - 3]

Sol.	 	 A	 =	 {1, 2, 3, 4}  
		   B	 =	 {0, 1, 2}
		  C	 =	 {0, 1, 2}
		  B ∩ C	 =	 {0, 1, 2} ∩ {0, 1, 2} = {0, 1, 2}
		 A × (B ∩ C)	 =	 {1, 2, 3, 4} × {0, 1, 2}
			   =	 {(1,0), (1,1), (1, 2), (2,0), (2,1), 

			   (2, 2), (3, 0), (3, 1), (3, 2), (4, 0),
				    (4, 1), (4,2)}� ... (1)
		  A × B	 =	 {1, 2, 3, 4} × {0, 1, 2}
			   =	 {(1,0), (1,1), (1,2), (2,0),(2,1),(2,2),
				    (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)
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		  A × C	 =	 {1, 2, 3, 4} × {0, 1, 2}
			   =	 {(1,0), (1,1), (1,2), (2,0),(2,1),(2,2),
				    (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)
	 (A × C) ∩(A×C)	 =	 {1, 2, 3, 4} × {0, 1, 2}
		  =	 {(1,0), (1,1), (1,2), (2,0),(2,1),(2,2),
			   (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)
� ... (2)
	 (1)	 =	 (2)		 Hence it is proved.
3.	 f(x) = 2x + 3, g(x) = 1 – 2x and h(x) = 3x,  prove 

that fo(g o h) = (f o g) oh.� [PTA - 5]

Sol.	 		 f(x)	 =	 2x + 3, g(x) = 1 – 2x,
			  h (x)	 =	 3x
 	 Now, (f o g)(x)	 =	 f(g(x)) = f(1– 2x)
				   =	 2(1 – 2x) + 3 = 5 – 4x 
	 Then,
			  (f o g)oh(x)	 =	 (f o g)h(x)) = (f o g)(3x) 
				   =	 5 – 4(3x) = 5 – 12x� ... (1)
			  (g o h)(x)	 =	 g(h(x)) = g(3x) = 1 – 2(3x)
				   =	 1 – 6x
	 So,
			  f o (g o h )(x)	 =	 f (1 – 6x)
		  		  =	 2 (1 – 6x) + 3 
				   =	 5 – 12x� ... (2)
	 From (1)  and (2), we get 
			  (f o g) oh	 =	 f o (g o h)

GOVT. EXAM QUESTION & ANSWERS

1 MARK

Multiple choice questions.

1.	 f = {(2, a), (3, b), (4, b), (5, c)} is a _________.
	�  [Govt. MQP - 2019]

(A)	identity function	 (B)	 one-one function
(C)	 many-one function	 (D)	 constant function

� [Ans. (C) many-one function]
Hint: 	 2

3

4

5

a

b

c

2.	 Let f (x) = x2 – x, then f (x – 1) – f(x + 1) is :
	�  [Sep.-2020]

	 (A)	 4x	 (B)	 2 –2x	(C)	 2 – 4x	 (D)	 4x – 2
� [Ans. (C) 2 – 4x]
Hint: 	 f (x – 1)	 =	 (x – 1)2 – (x – 1)

				   =	 x2 – 2x + 1 – (x – 1)

				   =	 x2 – 2x + 1 – x + 1
				   =	 x2 – 3x + 2
			  f (x + 1)	 =	 (x + 1)2 – (x + 1)
				   =	 x2 + 2x + 1 – x – 1
				   =	 x2 + x 
			 ∴ f (x – 1) – f (x + 1)
				   =	 (x2 – 3x + 2) – (x2 + x)
				   =	 x2 – 3x + 2 – x2 – x
				   =	 – 4x2 + 2

3.	 If n(A)= p and n(B)= q then n(A×B)= _______ 
� [Qy - 2019]

	 (A)	 p + q	 (B)	 p – q	(C)	 p × q	 (D)	 p
q

� [Ans. (C) p × q]
Hint: 	 n (A × B)	 =	 n (A) × n (B) = p × q

2 MARKS

1.	 Define a function.� [Govt. MQP - 2019]

Sol.	 �A relation f between two non-empty sets X and 
Y is called a function from X to Y if, for each  
x ∈ X there exists only one y ∈ Y such that  
(x, y)∈ f. 

	 That is, f = {(x, y) | for all x ∈ X, y ∈Y}
2.	 Let f be a function f :  →  be defined by  

f (x) = 3x + 2, x ∈ .� [Govt. MQP - 2019]

	 (i)	 Find the images of 1, 2, 3
	 (ii)	 Find the pre-images of 29, 53�
	 (iii)	 Identify the type of function
Sol.	 f :  →  is defined by f (x) = 3x + 2, 
	 (i)	 f (1)	 =	 3 (1) + 2 = 3 + 2 = 5
		   	 f (2)	 =	 3 (2) + 2 = 6 + 2 = 8
		   	 f (3)	 =	 3 (3) + 2 = 9 + 2 = 11
			 The images of 1, 2, 3 are 5, 8, 11 respectively.
	 (ii)	 If x is the pre-image of 29, then f (x) = 29. 
	 ⇒	 3x +2	 =	 29
			  3x	 =	 27
	 ⇒ 	 x	 =	 9.
	 Similarly, if x is the pre-image of 53, then 

f (x) = 53. ⇒ 3x +2 = 53
			  3x	 =	 51
	 ⇒	 x	 =	 17.
	 \the pre-images of 29 and 53 are 9 and 17 

respectively.
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