

Science

IX - Standard

Based on the latest Syllabus and updated New Textbook

Salient Features :

- Guide as per the latest Textbook
- Complete Solutions to Textbook Exercises.
- **—** Exhaustive Additional Question in all Units.
- Quarterly Exam 2019 [QY-2019], Half Yearly Exam 2019 [HY-2019] are incorporated in appropriate sections.
- Quarterly Exam Question Paper, Half Yearly Exam Question Papers are given.

orders@surabooks.com

2021 - 22 Edition © Reserved with Publishers

> ISBN : 978-81-8449-557-7 Code No. : SG 61

Author :

Mr. A. Murugesan, M.Sc., M.Ed., M.Phil. Chennai

Head Office:

1620, 'J' Block, 16th Main Road, Anna Nagar, **Chennai - 600 040. Phones**: 044-4862 9977, 044-486 27755. **Mob :** 81242 01000/ 81243 01000 **e-mail :** orders @surabooks.com **website :** www.surabooks.com

Our Guides for Std. IX

TERMWISE GUIDES (for each Term)

- 🔺 Sura's Tamil Guide
- 🔺 Sura's English Guide
- Sura's Maths Guide (EM & TM)
- Sura's Science Guide (EM & TM)
- Sura's Social Science Guide (EM & TM)
- Sura's 5-in-1 with all 5 subjects in one guide (EM & TM)

FULL YEAR GUIDES for 3 Terms together

- 🔺 Sura's Tamil Guide
- 🔺 Sura's English Guide
- Sura's Maths Guide (EM & TM)
- Sura's Science Guide (EM &TM)
- Sura's Social Science Guide (EM & TM)
- Sura's Map Workbook (EM & TM)

Our Guides for Std. X

GUIDES

- 🔸 சுராவின் தமிழ் உரைநூல்
- Sura's Will to Win English Guide
- Sura's Science Guide (EM & TM)
- Sura's Social Science Guide (EM & TM)
- Sura's English Guide
- Sura's Mathematics Guide (EM & TM)

orders@surabooks.com

NOTE FROM PUBLISHER

It gives me great pride and pleasure in bringing to you **Sura's Science Guide** for **9th Standard**. It is prepared as per the New Syllabus and New Textbook.

This guide encompasses all the requirements of the students to comprehend the text and the evaluation of the textbook.

• Additional questions have been provided exhaustively for clear understanding of the units under study.

In order to learn effectively, I advise students to learn the subject section-wise and practice the exercises given. It will be a teaching companion to teachers and a learning companion to students.

Though these salient features are available in this Guide, I cannot negate the indispensable role of the teachers in assisting the student to understand the subject thoroughly.

I sincerely believe this guide satisfies the needs of the students and bolsters the teaching methodologies of the teachers.

I pray the almighty to bless the students for consummate success in their examinations.

Subash Raj, B.E., M.S. - Publisher Sura Publications

All the Best

For More Information - Contact						
Doubts in Our Guides	:	enquiry@surabooks.com				
For Order	:	orders@surabooks.com				
Contact	:	96001 75757 / 8124301000				
Whatsapp	:	8124201000 / 9840926027				
Online Site	:	www.surabooks.com				
For Free Study Materials Visit http://tnkalvi.in						

orders@surabooks.com

CONTENTS

1.	Measurement	1 - 16
2.	Motion	17 - 40
3.	Fluids	41 - 60
4.	Electric charge and Electric current	61 - 76
5.	Magnetism and Electromagnetism	77 - 93
6.	Light	
7.	Heat	120 - 137
8.	Sound	138 - 153
9.	Universe	
10.	Matter Around Us	171 - 185
11.	Atomic Structure	186 - 202
12.	Periodic Classification of Elements	203 - 211
13.	Chemical Bonding	212 - 228
14.	Acids, Bases and Salts	229 - 243
	Carbon and its Compounds	
16.	Applied Chemistry	259 - 274
17.	Animal Kingdom	275 - 286
18.	Organisation of Tissues	287 - 304
19.	Plant Physiology	305 - 322
20.	Organ Systems in Animals	323 - 338
21.	Nutrition and Health	339 - 349
22.	World of Microbes	350 - 369
23.	Economic Biology	370 - 389
24.	Environmental Science	390 - 404
25.	LibreOffice Impress	405 - 407
	Common Quarterly Examination	408 - 409
	Common Half - Yearly Examination	410 - 412

UNIT

MEASUREMENT

LEARNING OBJECTIVES

At the end of this lesson, students will be able to

- Understand the fundamental and derived quantities and their units.
- Know the rules to be followed while expressing physical quantities in SI units.
- Get familiar with the usage of scientific notations.
- Know the characteristics of measuring instruments.
- Use vernier caliper and screw gauge for small measurements.
- Find the weight of an object using a spring balance.
- Know the importance of accurate measurements.

TEXT BOOK EXERCISES

Choose the correct answer : I.

1. Choose the correct one.

(a) mm < cm < m < km

(c) km < m < cm < mm

- (b) mm > cm > m > km
- (d) mm > m > cm > km

[Ans: (a) mm < cm < m < km]

(d) length

[Ans: (d) length]

[QY - 2019]

PHYSICS

2. Rulers, measuring tapes and metre scales are used to measure

(b) weight (a) (c) time mass

3. 1 metric ton is equal to

- (a) 100 quintals
- (b) 10 quintals (c) 1/10 quintals
- (d) 1/100 quintals [Ans : (b) 10 quintals]
- Which among the following is not a device to measure mass?
 - Spring balance (a)

(c) Physical balance

(d) Digital balance

(b) Beam balance

[Ans : (a) Spring balance]

2	Sura's O Science - 9th Std O Unit 01 O MEASUREMENT
II.	Fill in the blanks :
1.	Metre is the unit of [Ans : length
2.	1 kg of rice is weighed by [Ans : beam balance]
3.	Thickness of a cricket ball is measured by [Ans : vernier caliper
4.	Radius of a thin wire is measured by [Ans : screw gauge
5.	A physical balance measures small differences in mass up to
	[Ans : 1mg or less
Ans	The SI unit of electric current is kilogram. False. Correct statement : The SI unit of electric current is ampere .
	Kilometre is one of the SI units of measurement. True.
	In everyday life, we use the term weight instead of mass. True.
	A physical balance is more sensitive than a beam balance. True.
	One Celsius degree is an interval of 1K and zero degree Celsius is 273.15 K. True.
	With the help of vernier caliper we can have an accuracy of 0.1 mm and with screw gauge we can have an accuracy of 0.01 mm.

IV. Match the following :

Beam balance

Digital balance

1.	Length	kelvin	Ans.	Length	metre
	Mass	metre		Mass	kilogram
	Time	kilogram		Time	second
	Temperature	second		Temperature	kelvin
2.	Screw gauge	Vegetables	Ans.	Screw gauge	Coins
	Vernier caliper	Coins		Vernier caliper	Cricket ball

V. Assertion and reason type questions : Mark the correct answer as :

(a) Both A and R are true but R is not the correct reason.

Gold ornaments

Cricket ball

- (b) Both A and R are true and R is the correct reason.
- (c) A is true but R is false.
- (d) A is false but R is true

Beam balance

Digital balance

Vegetables

Gold ornaments

orders@surabooks.com

Sura's O Physics - 9th Std O Unit 01 O MEASUREMENT

1.	Assertion (A)	:	The scientifically correct expression is "The mass of the bag is 10 kg"
	Reason (R)	:	In everyday life, we use the term weight instead of mass.
		[A	Ans : (a) Both A and R are true but R is not the correct reason]
2.	Assertion (A)	:	0° C = 273.16 K. For our convenience we take it as 273 K after
			rounding off the decimal.
	Reason (R)	:	To convert a temperature on the Celsius scale we have to add 273
			to the given temperature.
			[Ans : (b) Both A and R are true and R is the correct reason]
3.	Assertion (A)	:	Distance between two celestial bodies is measured in terms of light year.
	Reason (R)	:	The distance travelled by the light in one year is one light year.
			[Ans : (d) A is false but R is true]

Assertion: Distance between two celestial bodies is measured in terms of astronomical unit.

VI. Answer very briefly :

1. Define measurement.

Ans. Measurement is the processes of comparison of the given physical quantity with the known standard quantity of the same nature.

2. Define standard unit.

Ans. Unit is the quantity of a constant magnitude which is used to measure the magnitudes of other quantities of the same nature.

3. What is the full form of SI system?

Ans. International System of Units.

4. Define least count of any device.

- The smallest length which can be measured by metre scale is called least count. (i)
- Value of one main scale division (ii) Least count of the instrument = -

Total number of vernier scale division

Least count = [Pitch / No. of head scale divisions]

5. What do you know about pitch of screw gauge?

Ans. Pitch of the screw gauge is the distance between two successive screw threads. It is measured by the ratio of distance travelled on the pitch scale to the number of rotations of the head scale.

Pitch = [Distance travelled on the pitch scale / Number of rotations of the head scale]

6. Can you find the diameter of a thin wire of length 2 m using the ruler from your instrument box?

Ans. No, I can not find the diameter of a thin wire of length 2 m using the ruler.

Ph:9600175757 / 8124201000

\otimes

[*HY* - 2019]

[*QY* - 2019]

4	ł	

Sura's O Science - 9th Std O Unit 01 O MEASUREMENT

VII. Answer briefly :

1. Write the rules that are followed in writing the symbols of units in SI system.

[*QY* - 2019]

Ans.(i)	Units named after scientists are written in lower case.
	Eg. joule, kelvin and newton.

- (ii) Symbols for the units are always written in lower case.Eg. m, kg and s.
- (iii) However, the symbols for the units derived from the names of scientists are written in capital letters.

Eg. C (Celsius), N (newton) and J (joule).

- (iv) Symbols are not followed by a full stop.Eg. 75 cm and not 75 cm.
- (v) Symbols are never written in plural.Eg. 100 kg, not as 100 kgs.

2. Write the need of a standard unit.

Ans. A Standard Unit is needed to maintain uniformity in measurements like length, weight, size and distance. Eg: Standard Unit of length is metre.

[HY - 2019] 🛞 **3**. Differentiate mass and weight. Ans. Sl. No. Mass Weight 1. Fundamental quantity Derived quantity 2. Has magnitude alone Has magnitude and direction - vector scalar quantity quantity 3. It is the amount of matter It is the normal force exerted by the surface contained in a body on the object against gravitational pull 4. Remains the same Varies from place to place 5. It is measured using physical It is measured using spring balance balance 6. Its unit is newton Its unit is kilogram

4. How will you measure the least count of vernier caliper?

Ans.Least Count or L.C. is the minimum reading or value that can be measured with a measuring tool or device.

VIII. Answer in detail :

- **1.** Explain a method to find the thickness of a hollow tea cup.
- Ans. Step 1: The Pitch, Least count and the type of zero error of the screw gauge are determined.
 - **Step 2 :** The given cup is placed in between two studs.

orders@surabooks.com

Sura's O Physics - 9th Std O Unit 01 O MEASUREMENT

5

 \bigotimes

- **Step 3 :** The head screw using the ratchat arrangement is freely rotated until the given cup is held firmly, but not tightly.
- Step 4: Pitch scale reading (PSR) by the head scale and head scale coincidence (HSC) with the axis of the pitch scale, are found.
- **Step 5 :** The readings are recorded and the experiment for different positions of the given cup is repeated.
- **Step 6 :** The thickness of the cup is calculated using the formula P.S.R+(HSC×L.C)
- **Step 7 :** Then the average of the last column of the table. is found. Hence the thickness of a hollow tea cup = mm.

2. How will you find the thickness of a one rupee coin?

- Ans. Step 1: The Pitch, Least count and the type of zero error of the screw gauge are determined.
 - **Step 2 :** The given coin is placed in between two studs.
 - **Step 3 :** The head screw using the ratchat arrangement is freely rotated until given one rupee coin is held firmly, but not tightly.
 - Step 4: Pitch scale reading (PSR) by the head scale and head scale coincidence (HSC) with are axis of the pitch scale are found.
 - **Step 5 :** The reading are recorded and the experiment for different positions of the given coin is repeated.
 - **Step 6**: The thickness of the coin is computed using the formula P.S.R+(HSC×L.C)
 - **Step 7**: Then the average of the last column of the table is found.

S. No.	P.S.R. (mm)	HSC (division)		CHSR = CHSC × LC (mm)	Total reading =PSR + CHSR (mm)
1.					
2.					
3.	(
			mean =	mm	

Hence the thickness of a one rupee coin =

IX. Numerical Problems :

1. Inian and Ezhilan argue about the light year. Inian tells that it is 9.46×10^{15} m and Ezhilan argues that it is 9.46×10^{12} km. Who is right? Justify your answer.

Solution : (Inian is correct)

Light travels 3×10^8 m in one second or 3 Lakhs kilometre in one second.

In one year we have 365 days.

The total number of second in one year is equal to $365 \times 24 \times 60 \times 60$

Distance travelled by light in 1 year

 $= (3.153 \times 10^{7}) \times (3 \times 10^{8})$ $= 9.46 \times 10^{15} \text{ m.}$

mm

6

Sura's O Science - 9th Std O Unit 01 O MEASUREMENT

2. The main scale reading while measuring the thickness of a rubber ball using Vernier caliper is 7 cm and the Vernier scale coincidence is 6. Find the radius of the ball.

Solution : MSR = 7 cm VC = 6 cm LC = 0.1 mm = 0.1 cm Diameter = DR = MSR + (VC × LC) = 7 + 0.06 cm Diameter D = 7.06 cm Radius R = $\frac{D}{2} = \frac{7.06}{2} = 0.035$ m

The radius of the ball = 0.0353 m.

3. Find the thickness of a five rupee coin with the screw gauge, if the pitch scale reading is 1 mm and its head scale coincidence is 68.

Solution : PSR	. =	$1 \text{ mm} = 1 \times 10^{-3} \text{ m}$
HSC	2 =	68
LC	2 =	$0.01 \text{ mm} = 0.01 \times 10^{-3} \text{ m}$
Total reading	, —	$PSR + (HSC \times LC)$
Thickness of the five rupee coir	1 =	$1 \times 10^{-3} + (68 \times 0.01 \times 10^{-3}) \text{ m}$
Thickness of the five rupee coir	1 =	$1.68 \times 10^{-3} \text{ m} = 1.68 \text{ mm}$

4. Find the mass of an object weighing 98 N.

Solution : W = mg

W = 98 N
g = 9.8 m/s²
m =
$$\frac{W}{g} = \frac{98}{9.8} = 10$$
 kg

Antext Activities

ACTIVITY - 1

Using Vernier caliper find the outer diameter of your pen cap.

Aim : To find the outer diameter of the pen cap.

Materials required : Vernier caliper, pen cap. Solution :

S. No.	MSR (cm)	VSR (division)	$VSR = (VSC \times LC)$	Diameter = MSR + VSR
1.	9	34	$34 \times 0.01 = 0.34$	9 + 0.34 = 9.34
2.	9	36	$36 \times 0.01 = 0.36$	9 + 0.36 = 9.36
3.	9	35	$35 \times 0.01 = 0.35$	9 + 0.35 = 9.35
				Mean D = 9.35 cm

Result : The outer diameter of the pen cap = 9.35 cm

[End of the activity]

orders@surabooks.com

Sura's O Physics - 9th Std O Unit 01 O MEASUREMENT

ACTIVITY - 2

Determine the thickness of a single sheet of your science textbook with the help of a Screw gauge.

S. No.	P.S.R. (mm)	HSC (division)	$\frac{\text{HSR (mm)}}{\text{HSR} = \text{HSC} \times \text{LC}}$	TR (mm) t = PSR + HSR mm		
1.	0	29	0.29	0.29		
2.	0	30	0.30	0.30		
3.	0	31	0.31	0.31		
		Mean thickness 't' of the sheet $= 0.30$				

LC =Least Count

PSR =Pitch Scale Reading

HSC =Head Scale Coincidence

HSR =Head Scale Reading

TR =**Total Reading**

Result : The thickness of the single sheet is = 0.30 mm.

[End of the activity]

 \otimes

7

Government Exam Questions

2 Mark

1. Match the following.

Column I	Column II	Ans.	Column I	Column II
Electric Current	kg		Electric Current	ampere
Luminous intensity	ampere		Luminous intensity	candela
Temperature	candela		Temperature	К
Mass	К		Mass	kg

7 Mark

1. Explain a method to find the diameter of spherically body. [*OY - 2019*] **Ans. Procedure :**

- Find the least count of the Vernier caliper. (i)
- Find the zero correction of the Vernier caliper. (ii)
- (iii) Fix the object firmly in between the two lower jaws of the Vernier.
- Measure the main scale reading and the Vernier scale coincidence. (iv)
- Repeat the experiment by placing the jaws of the Vernier at different position of (v) the object.
- (vi) Use the below formula to find the diameter of the object.

Diameter of object = $d = MSR + (VC \times LC) \pm ZC$ (cm)

orders@surabooks.com

8

Sura's O Science - 9th Std O Unit 01 O MEASUREMENT

Additional Questions

I.	Cho	oose the co	rrec	t answer :				
1.	Len	gth is						
				atter in an objec	t			
	(b)	The amount	of sp	ace an object tal	kes u	р.		
	(c)			veen two points.				
-	(d)			uff in an object	Ans	: (c) The distance	betwe	en two points]
2.		s is						
	(a)			veen two points				
	(b)	The distance	betv	veen three points	5	1. (
				atter contained i				
	(d)	The amount	or sp	ace an object oc			toino	d in an abject
ર	Unit	t used to mea	curo		e ann	ount of matter cor	Itallie	u m an object]
υ.	(a)	metre	sure	length	(h)	litre		
	· /	gram			· /	cubic metre (m^3)	ГА	ns : (a) metrel
4.			d to	measure mass	(4)	euble mede (m)	L	
		ml			(c)	cm	(d)	gram
					~ /			ns : (d) gram]
5 .	Hov			e there in 1 nar				
	(a)	10^{-10} m	(b)	10 ⁻⁹ m	(c)	10 ⁹ m		10^{10} m
-								ns : (b) 10 ⁻⁹ m]
6.		•				igth of our classro		
	(a)	km	(b)	m	(c)	cm	(d)	mm
7.	The	Kalvin ia tha	had	la unit of				[Ans : (b) m]
1.		temperature		ic unit of	(c)	length	(d)	volume
	(<i>a</i>)	temperature	(0)	mass	(0)	0	. ,	temperature]
8.		consist	ts of	'U' shape meta	l fra		15 • (4)	temperaturej
						Beam balance	(d)	Spring balance
		6.6) screw gauge]
9.	Lea	st count of a	vern	ier caliper is		cm.		
	(a)	1	(b)	0.1	(c)	0.01	(d)	0.001
								Ans : (c) 0.01]
10.	If n	o object is pl	aced	on the hook, th	nen t	he pointer of the s	pring	balance reads
			(1)	2		1	(1)	
11	(a)		(b)		(c)	1	(d)	0[Ans : (d) 0]
11.				veights are	(a)	K, N	(4)	NK
	(a)	kg, N	(0)	N, kg	(\mathbf{C})	K , N	. ,	N, K Ans : (a) kg, N]
12	Unit	ts named afte	r sci	entists			IA	$(a) \operatorname{Kg}_{1}(a)$
		lower case	1 501	·····		upper case		
	(c)		(b)		(d)		Ans : ((a) lower casel
13.	Ani	nstrument the	at is 1	used to measure	the d	liameter of a cricke	t ball i	s
	(a)				(b)			
		Vernier calip			(d)			
		-				[Ans :	: (a) V	ernier caliper]

orders@surabooks.com

9 Sura's O Physics - 9th Std O Unit 01 O MEASUREMENT 14. Distance between Chennai and Kanyakumari can be found in (a) Kilometres (b) Metres (c) Centimetres (d) Millimetres. [Ans : (a) Kilometres] II. Fill in the blanks : 1. The precision of vernier calipers is mm. [Ans : (a) 0.1mm] 2. The gravity accelerates any object, the distance fallen is proportional to _____. [Ans : time squared] **3**. SI unit of electric current is _____. [Ans : ampere] Larger unit for measuring time is _____. 4. [Ans : millennium] [Ans : 1.496×10^{11} m] **5.** The value of an astronomical unit is _____. **6.** Mass is a _____ quantity. [Ans : scalar] III. State whether true or false. If false, correct the statement : **1.** The precision of screw guage is 0.001cm. Ans. True. **2.** The unit of amount of substance is candela Ans. False. **Correct statement :** The unit of amount of substance is **mole**. 3. The symbol for the units derived from the names of scientists are written in capital letter Ans. True. 4. Yard was used as the unit of length. Ans. True. 5. Micron is also known as micro-metre Ans. True. **6.** A vernier caliper using the scale invented by Galileo. Ans. False. **Correct statement :** A vernier caliper using the scale invented **Pierre Vernier**. **7.** The SI unit of mass is kg. Ans. True. **8.** Weight has both magnitude and direction. Ans. True.

IV. Match the following :

Column - I	Column - II	Ans.	Column - I	Column - II
FPS	Metre, kilogram and second		FPS	Foot, pound and second
CGS	Foot, pound and second		CGS	centimetre, gram and second
MKS or SI	centimetre, gram and second		MKS or SI	Metre, kilogram and second

orders@surabooks.com

Ans.

4	-
	-

Sura's O Science - 9th Std O Unit 01 O MEASUREMENT

Column II

1 century (100 years)

radian

10⁻³m 10⁻⁹m

 10^{-10} m

 10^{-15} m

m

S

steradian

Column II

Column II

1 decade

1 year

1 millennium

Column I

10 years 10 centuries

10 decade

Angle

Time

365.24 days

Solid angle Length

Column I

Column I

2.	Column I	Column II	Ans.
	10 years	1 year	
	10 centuries	1 century (100 years)	
	10 decades	1 millennium	
	365.24 days	1 decade	

3.	Column I	Column II
	Angle	m
	Solid angle	radian
	Length	S
	Time	steradian

4.	Column I	Column II	Ans.	Colum
	Millimeter	10 ⁻¹⁵ m		Millimeter
	Nanometer	10 ⁻³ m		Nanometer
	Angstrom	10 ⁻⁹ m		Angstrom
	Fermi	10^{-10} m		Fermi

5 .	Column I	Column II	Ans.	Column I	Column II
	Temperature	Beam balance		Temperature	Thermometer
	Mass	Ruler		Mass	Beam balance
	Length	Digital clock		Length	Ruler
	Time	Thermometer		Time	Digital clock

V. Assertion and reason type :

- **1.** Assertion (A) : Light year and wave length both measure distance
 - **Reason (R)** : Both have dimensions of time.
 - (a) Both A and R are true but R is not the correct explanation of A.
 - (b) Both A and R are true and R is the correct explanation of A.
 - A is true but R is false. (c)
 - (d) A is false but R is true.
- 2. **Assertion** (A) : Density is a derived physical quantity Reason (R) : Density cannot be derived from the fundamental physical quantities. (a) Both A and R are true but R is not the correct explanation of A.
 - (b) Both A and R are true and R is the correct explanation of A.
 - (c) A is true but R is false.
 - (d) A is false but R is true.

3.

[Ans : (c) A is true but R is false]

- Correct statement : Density can be derived from mass and volume.
- Assertion (A) : Mass, Length and Time are fundamental physical quantities.
- They are independent of each other. Reason (R)
- Both A and R are true but R is not the correct explanation of A. (a)
- (b) Both A and R are true and R is the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true. [Ans : (b) Both A and R are true and R is the correct explanation of A]

orders@surabooks.com

Ph:9600175757 / 8124201000

[Ans : (c) A is true but R is false]

Sura's O Physics - 9th Std O Unit 01 O MEASUREMENT

11

4. The SI system of units is the improved system of units for Assertion (A) : measurement.

Reason (R) : The SI unit of mass is kilogram.

- (a) Both A and R are true but R is not the correct reason.
- (b) Both A and R are true and R is the correct reason.
- (c) A is true but R is false.
- (d) A is false but R is true.

[Ans: (b) Both A and R are true and R is the correct reason]

- 5. Assertion (A) : The skill of estimation is important for all of us in our daily life. The skill of estimation reduces our consumption of time. Reason (R)
 - Both A and R are true but R is not the correct reason. a)
 - Both A and R are true and R is the correct reason. b)
 - A is true but R is false. c)
 - A is false but R is true. d)

[Ans: (b) Both A and R are true and R is the correct reason]

VI. Comprehensive type :

(a) The speed of a body gives us an idea of how slow or fast that a body is moving. Speed of a body is the distance travelled by it per unit time. The SI unit of speed is metre per second. It is a scalar quantity. The speed of a running cab at any instant of time is shown by an instrument called, 'speedometer' and the distance travelled by a car is measured by another instrument called, 'odometer'.

1. Which of the following is not correct unit of speed?

(a) CHI/S (b) HI/S (c) KHI/H (d) KH	(a)	cm/s	(b) m/s	(c) km/h	(d) km/
-------------------------------------	-----	------	---------	----------	---------

[Ans: (d) km/s]

2. If the distance travelled by the cab in 3 hours is 120 km, then its speed will be

(b) 40 km/s (a) 40 m/s(c) 40 km/h

[Ans : (c) 40 km/h]

(d) 40 km/min

The formula for finding the speed of the cab is 3.

- (a) Distance = speed \times time
- (b) velocity = distance \times time
- (c) time = distance \times velocity

- (d) None of these.

[Ans : (a) Distance = speed × time]

Read the passage and answer the questions given below. **(b)**

Mass is the amount of matter contained in an object. Measurement of mass helps us to distinguish between lighter and a heavier body. Beam balance, spring balance and electronic balance are used to measure mass of different objects. The SI unit of mass is kilogram (kg). But different units are used to measure the mass of different objects depending upon their weight. e.g. weight (mass) of a tablet is measured in milligrams (mg), weight of a student is measured in kilogram (kg), and weight of a truck with goods is measured in metric tons. 1 metric ton is equal to 10 quintals and 1 quintal is equal to 100 kg. 1 gram is equal to 1000 mg.

The value of 1 metric ton is equal to 1.

(b) 10 quintals (a) 1000 kg

(c) 1000,000 g (d) 100 kg [Ans : (a) 1000 kg (or) (b) 10 quintals]

12

Sura's O Science - 9th Std O Unit 01 O MEASUREMENT

2. How will you measure weight of a tablet?

(b) g

(a) kg

(c) mg

(d) none of these. [Ans : (c) mg]

VII. Answer very briefly :

1. Write the units which are used to measure long distances.

Ans.km, AU, light year, parsec.

2. Define Astronomical unit.

Ans. AU is defined as the average distance between the earth and the sun. $1 \text{ AU} = 1.496 \times 10^{11} \text{ m.}$

3. Define light year.

Ans. The distance travelled by light in one year in vacuum.

1 light year = 9.46×10^{15} m.

4. Convert the temperature from Fahrenheit into Celsius & Kelvin.

Ans.	°F to °C	°F to K
	$\frac{(F-32)}{1.8}$	$\left[\frac{(F-32)}{1.8}+273\right]$

5. Convert 100°C into Kelvin.

Ans. 100 + 273 = 373 K. ie. °C + 273

6. Convert 112°F into K.

Ans. $\frac{(F-32)}{1.8} + 273 = \frac{(112-32)}{1.8} + 273 = \frac{80}{1.8} + 273 = 44.44 + 273 = 317.44 \text{ K}$

7. Write the principle of screw gauge.

- **Ans.**(i) When a screw is rotated in a nut, the distance moved by the tip of the screw is directly proportional to the number of rotations given.
 - (ii) Hence principle of the screw is considered as the principle of screw gauge.

8. What are the kinds of units?

- Ans.1. Fundamental or basic units
 - 2. Derived units

9. Give some examples of fundamental units.

Ans. The examples of fundamental units are kg for mass, m for length, s for time.

10. Give some examples of derived units.

Ans. The units of area, volume, density.

11. What is the standard unit of weight?

Ans.Newton is the standard unit of weight.

12. What is the standard unit of mass?

Ans. Kilogram is the standard unit of mass.

13. Define Mass.

Ans. Mass is the amount of matter contained in a body.

14. Define Weight.

Ans. The force with which the earth attracts a body towards its center is called weight.

Sura's O Physics - 9th Std O Unit 01 O MEASUREMENT

13

15. What is the SI unit of temperature?

Ans. Kelvin is the SI unit of temperature.

16. What is the measuring unit of the thickness of a plastic carry bag?

Ans. 1 micron = 10^{-6} m (or) µm.

VIII. Answer briefly :


1. Write temperature conversion.

Ans. Temperature Conversion (Exact)

From	To Fahrenheit	To Celsius	To Kelvin
Fahrenheit (°F)	°F	$\left(\frac{F-32}{1.8}\right)$	$\left[\frac{\mathrm{F}-32}{1.8}+273\right]$
Celsius (°C)	$(C \times 1.8) + 32$	°C	°C + 273
Kelvin (K)	$[(K - 273) \times 1.8] + 32$	K – 273	K

2. Write about the positive zero error in screw gauge instrument.

Ans. When the plane surface of the screw and the opposite plane stud on the frame are brought into contact, if the zero of the head scale lies below the pitch scale axis, the zero error is positive. For example, the 5th division of the head scale coincides with the pitch scale axis, then the zero error is positive and is given by $Z.E = + (n \times LC)$ where 'n' is the head scale coincidence. In this case, Zero error = $+ (5 \times 0.01) = 0.05$ mm. So the zero correction is - 0.05 mm.

Positive Zero error

3. Write SI units for the fundamental quantity.

Ans.	Basic Quantity	Unit
	Length	metre
	Mass	kilogram
	Time	second
	Electric current	ampere
	Temperature	kelvin
	Amount of substance	mole
	Luminous intensity	candela

4. Convert the following units in metre.

			-
Λ	n	C	

Smaller units	Value in metre
centimetre (cm)	10 ⁻² m
millimetre (mm)	10 ⁻³ m
micron or µm	10 ⁻⁶ m
nanometre (nm)	10 ⁻⁹ m
angstrom (Å)	$10^{-10}\mathrm{m}$
fermi (f)	$10^{-15} \mathrm{m}$

orders@surabooks.com

14 Sura's O Science - 9th Std O Unit 01 O MEASUREMENT 5. Draw and mark the parts of vernier caliper Ans. PARTS Marked in the Vernier caliper Lower fixed jaw 1 2 Upper fixed jaw 3. Lower movable jaw որու<mark>տրուստիություն</mark>ու 4. Vernier scale 5 Retainer Main scale 6. (8) (4) 6 7. Depth probe. **IX. Numerical Problems : 1.** A piece of iron of volume 40cm³ whose density is 6.8g/cm³. Find the mass of iron. Solution : Given, density of iron, D 6.8g/cm³ =volume of iron. V $40 \,\mathrm{cm}^3$ = mass of iron. M $= V \times D$ \therefore mass = volume × density] 40 cm³ × $\frac{6.8g}{\text{cm}^3}$ = 272.0g. т 2. Solve : The mass of 40 apples in a box is 5 kg. Find the mass of a dozen of them. (i) (ii) Express the mass of one apple in gram. Solution : **(i)** 40 apple = 5 kg = 05000 g 1 apple = 1 apple = 125 g \therefore 1 dozen = 12 apples $12 \text{ apples} = 125 \times 12 \text{ g}$ 12 apples = 1500 g.40 apples = 5000 g**(ii)** 1 apple = $\frac{5000}{40}$ g 1 apple = 125 gThe mass of 1 apple = 125 g. Χ. Answer in detail : 1. How will you find Zero Error of the screw gauge? Ans. Zero Error of a screw gauge : When the plane surface of the screw and the opposite plane stud on the frame area brought into contact, if the zero of the head scale coincides with the pitch scale axis there is no zero error.

Sura's O Physics - 9th Std O Unit 01 O MEASUREMENT

Positive zero error :

When the plane surface of the screw and the opposite plane stud on the frame are brought into contact, if the zero of the head scale lies below the pitch scale axis, the zero error is positive. For example, the 5th division of the head scale coincides with the pitch scale axis, then the zero error is positive and is given by

Z.E = + (n × LC) where 'n' is the head scale coincidence. In this case, Zero error = + (5 × 0.01) = 0.05mm. So the zero . correction is -0.05 mm.

Negative zero error :

When the plane surface of the screw and the opposite plane stud on the frame are brought into contact, if the zero of the head scale lies above the pitch scale axis, the zero error is negative.

For example, the 95th division coincides with the pitch scale axis, then the zero error is negative and is given by

$$ZE = -(100 - n) \times LC$$

$$ZE = -(100 - 95) \times LC$$

$$= -(5 \times 0.01)$$

$$= -0.05 \text{ mm}$$

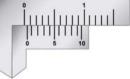
The zero correction is + 0.05 mm.

2. How will you find Zero Error of Vernier Caliper? Explain.

Ans. Zero error :

- (i) Unscrew the slider and move it to the left, such that both the jaws touch each other. Check whether the zero marking of the main scale coincides with that of the Vernier scale.
- (ii) If they are not coinciding with each other, the instrument is said to posses zero error. Zero error may be positive or negative.
- (iii) If the zero mark of the Vernier is shifted to the right, it is called positive error.
- (iv) On the other hand, if the Vernier zero is shifted to the left of the main scale zero marking, then the error is negative.

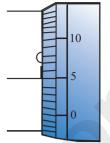
Positive zero error :


- (i) From the figure you can see that zero of the vernier scale is shifted to the right of zero of the main scale.
- (ii) In this case the reading will be more than the actual reading.
- (iii) Hence, this error should be corrected. In order to correct this error, find out which vernier division is coinciding with any of the main scale divisions.
- (iv) Here, fifth vernier division is coinciding with a main scale division.
- (v) So, positive zero error = $+5 \times LC = +5 \times 0.01 = 0.05$ cm.

Negative zero error :

- (i) You can see that zero of the vernier scale is shifted to the left of the zero of the main scale.
- (ii) So, the obtained reading will be less than the actual reading.
- (iii) To correct this error we should first find which vernier division is coinciding with any of the main scale divisions, as we found in the previous case.

orders@surabooks.com


Negative Zero Error

Positive zero error

Negative zero error

Positive Zero error

0

95

90

_	-
- 1	-
	O

Sura's O Science - 9th Std O Unit 01 O MEASUREMENT

- (iv) In this case, you can see that sixth line is coinciding. But, to find the negative error, we can count backward (from 10).
- (\mathbf{v}) So, the 4th line is coinciding. Therefore, negative zero error $= -4 \times LC = -4 \times 0.01 = -0.04$ cm.

3. Write short note on the following :

- **(i) Common balance**
- (ii) Physical balance
- (iii) Digital balance
- (iv) Spring balance

Ans. Common (beam) balance :

A beam balance compares the sample mass with a standard reference mass (Standard reference masses are 5g, 10g, 20g, 50g, 100g, 200g, 500g, 1kg, 2kg, 5kg). This balance can measure mass accurately up to 5g

Physical balance :

This balance is used in labs and is similar to the beam balance but it is a lot more sensitive and can measure mass of an object correct to a milligram. The standard reference masses used in this physical balance are 10 mg, 20 mg, 50 mg, 100 mg, 200 mg, 500 mg, 1 g, 2g, 5 g, 10 g, 20 g, 50 g, 100g, and 200 g.

Digital balance :

Nowadays, for accurate measurements digital balances are used, which measure mass accurately even up to a few milligrams, the least value being 10 mg (Figure 1.11). This electrical device is easy to handle and commonly used in jewellery shops and labs.

Spring balance :

This balance helps us to find the weight of an object. It consists of a spring fixed at one end and a hook attached to a rod at the other

end. It works by 'Hooke's law' which states that the addition of weight produces a proportional increase in the length of the spring. A pointer is attached to the rod which slides over a graduated scale on the right. The spring extends according to the weight attached to the hook and the pointer reads the weight of the object on the scale.

200

Spring balance

UNIT

MOTION

LEARNING OBJECTIVES

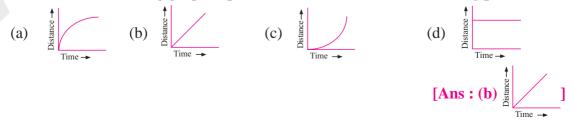
Students will be able to

- List the objects which are at rest and which are in motion around them.
- Understand distance and displacement.
- Determine the displacement and distance covered by an object describing a circular path.
- Classify the motion of vehicles as uniform motion and non-uniform motion. distinguish between speed and velocity.
- Relate accelerated and unaccelerated motion.
- Deduce the equations of motion of an object from velocity time graph.
- Write the equations of motion for a freely falling body.
- Understand the nature of circular motion.
- Identify centripetal force and centrifugal force in day to day life.

TEXT BOOK EXERCISES

I. Choose the correct answer :

- 1. The area under velocity time graph represents the
 - (a) velocity of the moving object. (b) displacement covered by the moving object.
 - (c) speed of the moving object. (d) acceleration of the moving object.


[Ans : (b) displacement covered by the moving object]

2. Which one of the following is most likely not a case of uniform circular motion?

- (a) Motion of the Earth around the Sun.
- (b) Motion of a toy train on a circular track.
- (c) Motion of a racing car on a circular track.
- (d) Motion of hours' hand on the dial of the clock.

[Ans : (c) Motion of a racing car on a circular track]

3. Which of the following graph represents uniform motion of a moving particle?

orders@surabooks.com

18		Sura's O Science - 9th Std O Unit 02 O MOTION
4.	The centri	fugal force is
	(a) a real	force. orce of reaction of centripetal force.
	. ,	ted towards the centre of the circular path. [Ans : (c) a virtual force
II.	Fill in th	e blanks :
1. 2.		quantity whereas velocity is a quantity. [<i>HY - 2019</i>] ([Ans : Scalar, Vector] of the distance – time graph at any point gives [Ans : Speed]
3. 4.	Negative a	cceleration is called [Ans : retardation (or) deceleration velocity – time graph shows [Ans : displacement
III.	State wh	ether true or false. If false, correct the statement :
		n of a city bus in a heavy traffic road is an example for uniform motion.
	for non-un	atement : The motion of a city bus in a heavy traffic road is an example iform motion . on can get negative value also.
	True.	
	Distance co	overed by a particle never becomes zero but displacement becomes zero.
4.	The velocit	ty – time graph of a particle falling freely under gravity would be a straighel to the x axis.
	Correct st velocity, w	tatement : The velocity - time graph of a particle moving at uniform yould be straight line parallel to the x axis. city – time graph of a particle is a straight line inclined to X-axis then its
		ent – time graph will be a straight line.
IV.	Assertion	n and reason type questions :
	Mark the	correct choice as:
		th assertion and reason are true and reason is the correct explanation of
	(b) If bot assert	h assertion and reason are true but reason is not the correct explanation of
		ertion is true but reason is false.
1	(d) If asso	ertion is false but reason is true.The accelerated motion of an object may be due to change in magnitude
5	Assertion	of velocity or direction or both of them
	Reason	: Acceleration can be produced only by change in magnitude of the velocity. It does not depend the direction.
0	A	[Ans : (c) If assertion is true but reason is false.
2.	Assertion Reason	 The Speedometer of a car or a motor-cycle measures its average speed Average velocity is equal to total displacement divided by total time taken. [Ans : (d) Assertion is false but reason is true

Sura's O Physics - 9th Std O Unit 02 O MOTION

19

3. Assertion : Displacement of a body may be zero when distance travelled by it is not zero.
 Reason : The displacement is the shortest distance between initial and final position.
 [Ans : (a) Both assertion and reason are true and reason is the correct explanation of assertion]

V. Match the Following :

		List I		List II		
	1.	Motion of a body covering equal distances in equal intervals of time				
	2.	Motion with non uniform acceleration	В	B this of the second s		
	3.	Constant retardation				
	4.	Uniform acceleration	D	tipolay Time →		
Ans.		List I		List II		
	1.	Motion of a body covering equal distances in equal intervals of time	A	↑ ibo y Time →		
	2.	Motion with non uniform acceleration	eleration \mathbf{B}			
	3.	Constant retardation	С	tipopo OTime →		
	4.	Uniform acceleration	D	↑ ² ² ² ² ² ² ² ²		

VI. Answer briefly :

1. Define velocity.

- Ans. (i) Velocity is the rate of change of displacement. It is the displacement with unit time. It is a vector quantity. The SI unit of velocity is ms⁻¹.
 - (ii) Thus, Velocity = Displacement / time taken.

orders@surabooks.com

20		Sura's O Science - 9th Std O Unit 02 O MOTION		
2.	Distinguish distance and displacement. $[QY - 2019]$			
Ans.	Sl. No.	Distance	Displacement	
	1	The actual length of the path travelled by a moving body irrespective of the direction	The change in position of a moving body in a particular direction	
	2	It is a Scalar quantity	It is a Vector quantity	

3. What do you mean by uniform motion?

Ans. An object is said to be in uniform motion if it covers equal distances in equal intervals of time howsoever big or small these time intervals may be.

4. Compare speed and velocity.

	•		
ıs.	Sl. No. Speed		Velocity
	1.	It is the rate of change of distance with respect to time	It is the rate of change of displacement with respect to time
	2.	It is a scalar quantity having magnitude only	It is a vector quantity having both magnitude and direction
	3.	Speed is velocity without a particular direction	Velocity is speed in a particular direction
	4.	It is measured in ms ⁻¹ in SI system	It is also measured in ms ⁻¹ in a particular direction in SI system
	5.	Speed in any direction would be a positive quantity, since the distance in any direction is a positive quantity.	Velocity can get both positive and negative values. If velocity in one direction is assumed to be positive then the velocity in the opposite direction would be a negative quantity. Velocity can get zero value also.

5. What do you understand about negative acceleration?

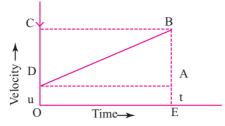
Ans. If velocity decreases with time the value of acceleration is negative. Note : Negative acceleration is called retardation or deceleration.

6. Is the uniform circular motion accelerated? Give reasons for your answer.

- **Ans.** When an object is moving with a constant speed along a circular path, the change in velocity is only due to the change in direction. Hence it is accelerated motion.
- 7. What is meant by uniform circular motion? Give two examples of uniform circular motion.
- Ans. When an object moves with constant speed along a circular path, the motion is called uniform circular motion.

Example :

- 1. The Earth moves around the Sun in the uniform circular motion.
- 2. The Moon moves in uniform circular motion around the Earth.


VII. Answer in detail :

1. Derive the equations of motion by graphical method.

[QY - 2019]

Ans. Equations of motion from velocity – time graph:

Sura's O Physics - 9th Std O Unit 02 O MOTION

Graph shows the change in velocity with time of a uniformly accelerated object. The object starts from the point D in the graph with velocity u. Its velocity keeps increasing and after time t it reaches the point B on the graph.

The initial velocity of the object = u = OD = EA

The final velocity of the object =
$$v = OC = EB$$

Time = t = OE = DA

Also from the graph we know that, AB = DC

1. First equation of motion :

By definition, acceleration	= change in velocity / time
-	= (final velocity – initial velocity)/time
	= (OC - OD) / OE
	= DC / OE
а	= DC / t
DC	= AB = at
From the graph EB	= EA + AB
V	$= u + at$ \longrightarrow (1)
This is first accustion of max	tion

This is first equation of motion.

2. Second equation on of motion :

From the graph the distance covered by the object during time t is given by the area of quadrangle DOEB

= area of the quadrangle DOEB = area of the rectangle DOEA + area of the triangle DAB = $(AE \times OE) + (1/2 \times AB \times DA)$ = $ut + \frac{1}{2} (at^2)$ (2)

This is the second equation of motion.

S

S

3. Third equation of motion :

From the graph the distance covered by the object during time, t is given by the area of the quadrangle DOEB. Here DOEB is a trapezium. Then,

S	=	area of trapezium DOEB
	=	$\frac{1}{2}$ × sum of length of parallel side × distance
		between parallel sides
	=	$\frac{1}{2} \times (OD + BE) \times OE$
S	=	$\frac{1}{2} \times (u+v) \times t$
since $a = (v - u) / t$ or t	=	(v-u)/a
Therefore s	=	$\frac{1}{2} \times (v+u) \times (v-u) / a$
2as	=	$v^2 - u^2$
v^2	=	$u^2 + 2 as \longrightarrow (3)$

This is the third equation of motion.

orders@surabooks.com

Ph:9600175757 / 8124201000

21

0	0
_	4

Sura's O Science - 9th Std O Unit 02 O MOTION

2. Explain different types of motion.

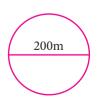
Ans. Different types of motion :

- (i) Linear motion : The motion of an object along a straight line is known as linear motion. **Ex** : Car moving on a straight road.
- (ii) **Circular motion :** The motion of an object is a circular path is known as circular motion. **Ex :** Earth revolving around the sun.
- (iii) Oscillatory motion : Repetitive to and fro motion of an object at regular interval of time is called as oscillatory motion. Ex : Motion of pendulum of a clock.
- (iv) Random motion : The disordered or irregular motion of a body is called random motion. Ex : Movement of fish under water.

VIII. Exercise Problems :

1. A ball is gently dropped from a height of 20 m. If its velocity increases uniformly at the rate of 10ms^{-2} , with what velocity will it strike the ground? After what time will it strike the ground?

Ans. Here we have


пете	we have		
	Initial velocity, u	=	0
	Distance, s	=	20 m
	Distance, s Acceleration, a Final velocity, v	=	10m/s^2
	Final velocity, v	=	?
	Time, t	=	?
a)	Calculation of fina		
	We know that, v^2	=	$u^2 + 2$ as
	v^2	=	$0 + 2 \times 10 \text{ m/s}^2 \times 20 \text{ m}$
	v^2	=	$\begin{array}{l} 0 + 2 \times 10 \ \text{m/s}^2 \times 20 \ \text{m} \\ 400 \ \text{m}^2/\text{s}^2 \end{array}$
			$\sqrt{400m^2/s^2}$
	\mathcal{V}	=	20 m/s
b)	Calculation of time	e, t	
	We know that, v	=	u + at
	20 m/s	=	$0 + 10 \text{ m/s}^2 \times t$
			$20m/s^2$
	t	=	$\frac{20m/s^2}{20m/s} = 2s$
-			

:. Ball will strike the ground at a velocity of 20 ms⁻¹ Time taken to reach the ground = 2s.

2. An athlete completes one round of a circular track of diameter 200 m in 40 s. What will be the distance covered and the displacement at the end of 2 m and 20 s?

Ans. Here we have

Diameter	=	200 m
: Radius	=	200 m/2 = 100 m
Time of one rotation	=	40 s
Time after 2m 20 s	=	$2 \times 60 \ s + 20 \ s = 140 \ s$
Distance after 140 s	=	?
Displacement after 140 s	=	?
Circular track with diame	ter	of 200m

orders@surabooks.com

23

Sura's O Physics - 9th Std O Unit 02 O MOTION

We know that, velocity = <u>circumference</u> along a circular path time $v = \frac{2\pi r}{40s}$ $v = \frac{2 \times 3.14 \times 100 \text{m}}{40 \text{s}}$ = $\frac{628 \text{ m}}{40s}$ = 15.7 m/sν **Distance after 140 s** a) We know that, distance = velocity \times time Distance = $15.7 \text{ m/s} \times 140 \text{ s}$ \Rightarrow = 2198 mDisplacement after 2 min 20 s i.e., in 140 s **b**) We know that, distance = velocity \times time Since, rotation in 40 s = 1 \therefore Rotation in 1 $s = \frac{1}{40}$ $\therefore \text{ Rotation in } 140 \ s = \frac{1}{40} \times 140 = 3.5$: In 3.5 rotation athlete will be just at the opposite side of the circular track.

i.e. at a distance equal to the diameter of the circular track which is equal to 200m

: Distance covered in $2\min 20 s = 2198 \text{ m}$

Displacement after $2\min 20 s = 200 \text{ m}$.

3. A racing car has a uniform acceleration of 4ms⁻². What distance it covers in 10s after the start?

Ans. Here we have

Acceleration, $a = 4 \text{ m/s}^2$ Initial velocity u = 0Time t = 10 sDistance (s) covered = ? We know that, $s = ut + \frac{1}{2} at^2$ $s = (0 \times 10s) + [\frac{1}{2} \times 4 \text{ m/s}^2 \times (10 \text{ s})^2]$ $= \frac{1}{2} \times 4 \text{ m/s}^2 \times 100 \text{ s}^2$ $= 2 \times 100 \text{ m} = 200 \text{ m}$

Thus, racing car will cover a distance of 200 m after start in 10s with given acceleration.

orders@surabooks.com

24

Sura's O Science - 9th Std O Unit 02 O MOTION

Z Intext Activities

ACTIVITY - 1

Look around you. You can see many things: a row of houses, large trees, small plants, flying birds, running cars and many more. List the objects which remain fixed at their position and the objects which keep on changing their position.

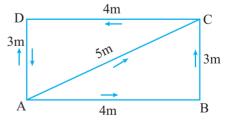
- 1. Row of houses, large trees, small plants are the examples, of immovable objects.
- 2. Flying birds, running cars and buses are the examples of movable objects.

Activity to be done by the students themselves 🦽

ACTIVITY - 2

Tabulate the distance covered by a bus in a heavy traffic road in equal intervals of time and do the same for a train which is not in an accelerated motion. From your table what do you understand?

The bus covers unequal distance in equal intervals of time but the train covers equal distances in equal intervals of time.


Solution :

Distance covered by a BUS in a heavy traffic	Distance covered by a TRAIN which is NOT in an accelerated motion
In first 10 minutes $= 1$ km.	In first 5 minutes $= 2$ km.
Next 10 minutes $= 2$ km.	Next 5 minutes $= 2$ km.
Next 10 minutes $= 1.5$ km	Next 5 minutes $= 2 \text{ km}$
Covers unequal distance in equal intervals of time.	Covers equal distances in equal intervals of time
Such motion is called Non Uniform Motion.	Such motion is called Uniform Motion.

ACTIVITY - 3

Observe the motion of a car as shown in the figure and answer the following questions:

Compare the distance covered by the car through the path ABC and AC. What do you observe? Which path gives the shortest distance to reach D from A? Is it the path ABCD or the path ACD or the path AD?

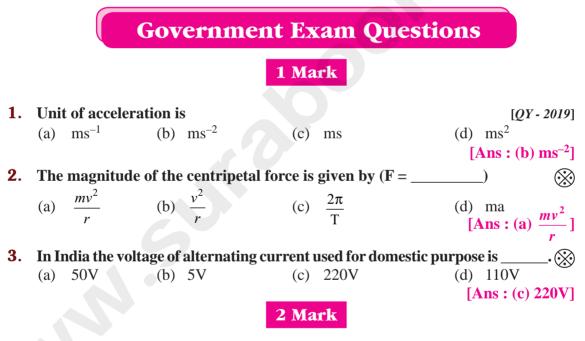
Solution :

- 1. Distance covered by the car through the path ABC = 4m + 3m = 7 m. and AC = 5 m. The distance covered by the car through the path ABC is large compared to AC.
- 2. The shortest distance to reach D from A is path AD = 3m.
- 3. The total distance covered by the car ABCDA = 14 m. It finally reaches to A.

Sura's O Physics - 9th Std O Unit 02 O MOTION

25

ACTIVITY - 4


Take a large stone and a small eraser. Stand on the top of a table and drop them simultaneously from the same height? What do you observe? Now, take a small eraser and a sheet of paper. Drop them simultaneously from the same height. What do you observe? This time, take two sheets of paper having same mass and crumple one of the sheets into a ball. Now, drop the sheet and the ball from the same height. What do you observe?

Solution :

Both the stone and the eraser have reached the surface of the Earth almost at the same time.

The eraser reaches first and the sheet of paper reaches later.

The paper crumpled into a ball reaches ground first and plain sheet of paper reaches later, although they have equal mass. It is because of air resistance. The magnitude of air resistance despends on the area of object exposed to air. So the sheet of paper reaches later.

1. A sound is heard 5 s later than the lightning is seen in the sky on a rainy day. Find the distance of location of lightning? Given the speed of sound = 346 ms^{-1}

Solution :

Speed = $\frac{\text{Distance}}{\text{Time}}$ Distance = Speed × Time = 346 × 5 = 1730 m Thus, the distance of location of lightning is 1730 m.

26

Sura's O Science - 9th Std O Unit 02 O MOTION

Additional Questions

I.	Cho	oose the c	correc	ct answer :								
1. A particle is moving in a circular pattern of radius <i>r</i> . The displacement af a circle would be							ment after hal					
						2		2				
	(a)	zero	(b)	πr	(c)	2 <i>r</i>	(d)	$2\pi r$ [Ans : (c) 2r				
2.				ing cases of mo	tions,	the distanc	e moved and					
	of d	isplacemen		-								
	(a)	If the car is	s movi	ng in the straigh	nt roa	d.						
	(b)			ng in a circular								
	(c)			olving around th								
	(d)	The pendu	lum is	moving to and	fro							
							-	straight road				
3.		ody is throw ill rise is	n vert	ically upward v	with v	velocity u, th	e greatest he	ight h to whic				
	(a)	$u^2/2g$	(b)	u^2/g	(c)	u/g	(d)	<i>u</i> /2g				
							[4	Ans : (a) $u^2/2g$				
4.	If the displacement of an object is proportional to square of time, then the obj											
	mov	es with										
	(a)	uniform ve	elocity		(b)	uniform ac	celeration					
	(c)	increasing	accele	eration	(d)	decreasing	acceleration					
						[Ans	: (b) uniform	n acceleratior				
5.	From the given $v-t$ graph, u can be inferred that the object is											
	(a)	in uniform	-		(b)	at rest	00 jeet 15	/elocit				
	` ´	in non-uni			. ,		ith uniform a	Time -				
	(C)	III IIOII-uIII		liotioli	(u)	-		iform motion				
6.	A ro	o undor v t	grank	represents a p	hveid							
0.		m ²	(b)		•	m ³		ms ⁻¹				
	(a)	111	(0)	111	(C)	111	(u)	[Ans : (b) m				
7.	m/s ²	2 is the unit	of									
	(a)	distance	-	displacement	(c)	velocity	(b)	acceleration				
	(u)	distance	(0)	uispideement	(0)	velocity	· · ·					
8.	The	rate of cha	nge of		[Ans : (d) acceleration							
		speed	0	velocity	(c)	acceleratio	n (d)	retardation				
	(u)	speed	(0)	velocity	(0)	acceleratio	· · ·	s : (b) velocity				
9.	A sc	alar quanti	itv has	1								
	(a)	magnitude	•		(b)	direction of	nly					
	(a) (c)	both	omy		(d)	none	•	agnitude only				
			t unde	erones accelerat	· · /	none	[/ III5 • (u) III	agintude only				
10		When an object undergoes acceleration										
10.		there is also	Nave o	/1 L Y								
10.	(a)	there is alw	•		(b) there is always an increase in its speed							
10.	(a) (b)	there is alw	vays a	n increase in its		•						
10.	(a)		vays a vays ac	n increase in its		1	a farea alwa	ys acting on it				

orders@surabooks.com

27 Sura's O Physics - 9th Std O Unit 02 O MOTION **11.** A body is projected up with an initial velocity u m/s. It goes up to a height, 'h' metres in 't' seconds time. Then it comes back at the point of projection. Considering negligible air resistance, which of the following statement is true? (a) the acceleration is zero (b) the displacement is zero (c) the average velocity is 2h/t(d) the final velocity is 2u when body reaches projection point [Ans : (b) the displacement is zero] **12.** A car accelerates at 1.5m/s^2 in a straight road. How much is the increase in velocity in 4s. (a) 6 m/s (b) 4 m/s(c) 3 m/s(d) 2.66 m/s [Ans: (a) 6 m/s] **13.** The slope of the distance time curve is steeper / greater is the (a) velocity (b) acceleration (c) displacement (d) speed [Ans : (d) speed] **14.** The given graph represents motion with ______ speed. (b) non uniform (a) uniform (c) constant (d) none [Ans : (b) non uniform] **15.** The relation between displacement and time is given by the equation of (a) $v^2 = ut + at$ (b) $s = ut + \frac{1}{2}at^2$ (d) $v^2 = u^2 + 2as$ (c) v = s/t[Ans: (b) $s = ut + \frac{1}{2} at^2$] **16.** A body moves in a uniform circular motion (a) It is moving with constant velocity (b) its acceleration is zero (c) the body has an acceleration (d) none of the above [Ans : (a) It is moving with constant velocity] **17.** Speed of the body in particular direction can be called (a) acceleration (b) displacement (d) distance (c) velocity [Ans : (c) velocity] **18.** Statement A: Uniform circular motion is a case of accelerated motion **Statement B** : In third equation of motion we do not have the term time (a) Statement B is true. A is false (b) Statement A is true. B is false (c) neither statement A nor B is true (d) both are true [Ans : (d) both are true] **19.** Which of the following is correct about uniform circular motion direction of motion is continuously changed (i) (ii) direction of motion is not changed (iii) speed and direction both remain constant (iv) speed is constant but direction is changing (a) ii & iii are correct (b) i, ii & iii are correct (d) all of these (c) i & iv are correct

[Ans : (c) i & iv are correct]

28					Sura's	s o Science	e - 9th Std O U	nit 02 o MOTION
20 .	Whi		-	es have th				
	(a)	speed, ve			• • •	acceleration		
	(c)	velocity,	time		(d)	velocity, a	acceleration	
~ 1	_			_			[Ans : (a) s	peed, velocity]
21.		and mot						
	(a)	non relat	ive (b)	not related	d (c)	relative		none
~ ~			0					s : (c) relative]
22.								e corner. If the
					,	-	nt of the ant i	
	(a)	10m	(b)	14m	(C)	28m		2m
09	The	dianlagor	mont on	wanad has a	second h	and of ra		Ans: (a) 10m]
		lution is	nent co	vereu by a	second n	and of rad	uius r in a c	clock after one
	(a)	360°	(b)	0	(c)	2 m	(d)	$2r$ [Ang \cdot (b)
	(a)	01	(0)	0	(\mathbf{C})	51	(u)	2r [Ans: (b)]
94	A m	1 A A A A A A A A A A A A A A A A A A A	his ho	15e at 6 30	am for	a morning	walk and r	eturns back at
67.							d by him is _	
		2 km		zero	-	8 km		• 4 km
	(u)	2 KIII	(0)	2010	(0)	0 KIII		Ans : (b) zero]
25.	A bo	dv is said	l to be ii	n non unife	orm motio	n if it trav		
	(a)			unequal in			eis	
	(b)	-		equal inter				
	(c)			in unequal				
	(d)			in equal in				
	(4)						ce in equal in	terval of time]
26.	Ααι	antitv wł	uich has	both mag				
	(a)	-		distance				moving body
							• •	ns : (c) vector]
27.	A bı	is acceler	ating wi	th 4ms ⁻² c	hanges its	speed fro	m 60ms ⁻¹ to a	a certain value
		s. The fina			U	•		
	(a)	40 m/s	(b)	25 ms ⁻¹	(c)	60 ms^{-1}	(d)	30 ms^{-1}
	. ,						[A 1	ns : (a)] 40 m/s
28 .	A qu	antity ha	s a valu	e of –16ms	s ⁻² . It is th	e		
	(a)	accelerat			(b)		f an object	
	(c)	retardatio	on of an	object	(d)	speed of a	in object	
				·		[Ans :	(c) retardatio	n of an object]
29.	A bo	y throws	a ball u	p and cate	hes it whe	en the ball	falls back. In	which part of
				accelerati				-
	(a)	during do	ownward	l motion	(b)	when the	ball comes to	rest
	(c)	during up			(d)	when the	boy catches th	e ball.
						[Ans : (a)) during down	ward motion]
30.	Cho	ose the co	orrect op	otion.			C	_
	(a)		_		is a vector	, accelerati	ion is a vector	
	(b)						ion is a vector	
	(c)						ion is a vector	
	(d)			•				
	~ /							ion is a vector]
		distance distance	is a vect is a scala	or, velocity ar, velocity	is a vector is a vector	r, accelerat , accelerati	ion is a vector ion is scalar	

orders@surabooks.com

Sura's O Physics - 9th Std O Unit 02 O MOTION

- **31**. If a moving body comes to rest, then its acceleration is
 - (a) positive (b) negative
 - (c) zero
 - (d) all of these depending upon initial velocity.
- **32.** If the velocity of a body changes uniformly from u to v in time t, the sum of average velocity and acceleration is

(a)
$$\frac{(u+v)}{t}$$
 (b) $\frac{(v-u)}{t}$ (c) $\frac{2u}{t}$

33. Acceleration is defined as the rate of change of

(a) distance (b) velocity (c) speed

[Ans : (b)

[Ans : (c) a force always acting on it]

34. When an object undergoes acceleration

- (a) there is always an increase in its velocity
- (b) there is always an increase in its speed
- (c) a force always acting on it.
- (d) all the above

35. The equation v = u + at gives information as

- (a) velocity is a function of time
- (b) velocity is a function of position
- (c) position is a function of time
- (d) position is a function of time and velocity

[Ans : (a) velocity is a function of time]

36. Which of the following can determine the acceleration of a moving object.

- (a) area of velocity time graph
- (c) area of distance time graph
- (b) slope of velocity time graph(d) slope of distance time graph

[Ans : (b) slope of velocity time graph]

37. What is the slope of the body when it moves with uniform velocity?

(a) positive

(c) zero

- (b) negative
- (d) may be positive or negative

[Ans : (c) zero]

38. If a body starts from rest, what can be said about the acceleration of body?

- (a) positively accelerated
- (b) negative accelerated(d) none of the above
- (c) uniform accelerated
- [Ans : (a) positively accelerated]

39. When a body moves uniformly along the circle then

- (a) its velocity changes but speed remains the same
- (b) its speed changes but velocity remains the same
- (c) both speed and velocity changes
- (d) both speed and velocity remains same

[Ans : (a) its velocity changes but speed remains the same]

40. Distance travelled by a freely falling body is proportional to

- (a) mass of the body
- (b) square of the acceleration due to gravity
- (c) square of the time of fall
- (d) time of fall

[Ans : (c) square of the time of fall]

orders@surabooks.com

Ph:9600175757 / 8124201000

(d) $\frac{2v}{t}$ [Ans : (d) $\frac{2v}{t}$] (d) displacement [Ans : (b) velocity]

[Ans : (b) negative]

29

30		Sura	's 🔉 Science – 9	th Std o Unit 02 o MOTION					
41.	If the displacement - time graph of a particle is parallel to the time axis, then velocity of the particle is.								
	(a) infinity	(b)	unity						
	(c) equal to acceleration	(d)	zero	[Ans : (d) zero]					
42 .	In the velocity time graph, AB s	shows tha	t the body has						
	(a) uniform acceleration		·	▲					
	(b) non-uniform retardation			A A B					
	(c) uniform speed								
	(d) initial velocity OA & is mov [Ans : (d) initial velo	-		ition. The second seco					
43 .	A body moving with an initial ve after 10s is	elocity 5m	s ⁻¹ and acceler	rates at 2ms ⁻² . Its velocity					
	(a) 20ms^{-1} (b) 25ms^{-1}	(c)	5ms^{-1}	(d) 22.55ms^{-1}					
	(a) 20115 (b) 23115	(C)	51115	$[Ans: (b) 25ms^{-1}]$					
44	In a 100m wasa, the minner tak	an 10n 4a	ussah tha fui						
44.	In a 100m race, the winner tak speed of the winner is	es ius to	reach the link	sning point. The average					
	(a) $5ms^{-1}$ b) $20ms^{-1}$	c)	40ms ⁻¹	d) 10ms ⁻¹					
				[Ans : (d) 10ms ⁻¹]					
45 .	The area under velocity – time		resents						
	(a) velocity of the moving object	ct							
	(b) displacement covered by the	e moving o	object						
	(c) speed of the moving object								
	(d) acceleration of the moving of	-							
	[Ans :	(b) displa	cement cover	ed by the moving object]					
46 .	A car is being driven at a speed rest in 5 s. The deceleration pro								
	(a) $+4ms^{-2}$ (b) $-4ms^{-2}$		$-0.25 \mathrm{ms}^{-2}$	(d) $+0.25 \text{ms}^{-2}$					
	$(a) +4 \operatorname{Ins} (b) -4 \operatorname{Ins}$	(C)	-0.251115	$[Ans: (b) -4ms^{-2}]$					
47	The force remarkle for dryin	a of oloth	ain a mashin						
47.	The force responsible for dryin(a) Centripetal force		Centrifugal fo						
	(a) Centripetal force(c) Gravitational force		Electro static						
	(c) Gravitational force	(u)		s : (b) Centrifugal force]					
п	Fill in the blanks :		LAI	s. (b) Centringar forcej					
II. 1.		tion than	it is said to be	ot [Ang nost]					
	If a body does not change its posi								
2.	The back and forth motion of a sy	U							
3.	In uniform motion an object trave	els equal _	in	interval of time. [Ans. distances, equal]					
4.	The actual path covered by a bod	y is called	•	[Ans. distance]					
5 .	Displacement is the distan	•		[Ans. shortest]					
6.	The motion of the bus is m		5 5	[Ans. non-uniform]					
2.	II			[

orders@surabooks.com

Sura's O Physics - 9th Std O Unit 02 O MOTION	31
 7. Rate of change of displacement is [Ans. veloc 8. Speed is a quantity whereas velocity is a [Ans. scalar, vec 9. If final velocity is less than initial velocity the acceleration is [Ans. negative] 	tor]
 10. If final velocity is equal to initial velocity the value of acceleration is [Ans. z 11. The slope of distance time graph becomes steeper & steeper the speed 	ero]
[Ans. increa	ses
12. A straight line parallel to x-axis in velocity time graph, it represents the object mo	
in [Ans. uniform veloc	
13. From v-t graph can be calculated. [Ans. displacem]	
14. measures the instantaneous speed of the automobile. [Ans. Speedome	
15. Slope of velocity time graph gives[Ans. acceleration 16. The value of acceleration for a body at rest is[Ans. z	lon
17. At the highest point, when a body is thrown vertically upwards, the velocity is	
[Ans. z	
18. A body moves in a circular pattern the of velocity does not change but	
changes. [Ans. magnitude, direct	
19. When a body moves in a circular pattern acceleration is directed radially tow	
the centre of the circle. [Ans. centripe	tal
20. The separation of cream from milk an example for the application of [Ans. centrifu	aoll
21. Consider an object is rest at position $x = 20m$. Then its displacement – time gr	
will be straight line to the time axis. [Ans : Paral	
III. State whether true or false. If false, correct the statement :	
 Displacement can be zero but distance never. 	
Ans. True.	
2. Time is a vector quantity.	
Ans. False.	
Correct statement : Time is a scalar quantity.	
3. Displacement magnitude can be greater than distance travelled by the object.	
Ans. True.	
4. If the velocity of the body decreases with time the acceleration is negative and the motion is called decelerated motion.	ne
Ans. True.	
5. Acceleration is a scalar. Ans. False.	
Correct statement : Acceleration is a vector.	
6. The area of the velocity time graph gives displacement of the body.	
Ans. True.	
7. Motion & rest are relative terms.	
Ans. True.	
8. An object can be moving with uniform speed but variable acceleration.	
Ans. True.	

This is kstores

6 O	nly	for Samp	ole	For Full Book Order Online or Available at All Leading Bool
;	32			Sura's O Science - 9th Std O Unit 02 O MOTION
	9.	Slope of di	sta	nce-time graph indicates the speed.
1	Ans	True.		
	10.	It is possibl	e to	have object moving with uniform velocity but non-uniform acceleration.
1	Ans	. True.		
-	11.	It is possib	le t	o have object moving with uniform speed but variable acceleration.
I	Ans	. False.		
		Correct st constant a		ement : It is possible to have object moving with uniform speed but eleration.
	12.			erienced by a boy in the merry-go-round is a centripetal force.
		False.	1	
		Correct st centrifuga		ement : The force experienced by a boy in the merry-go-round is a pre-
	13.	0		ocity of a freely falling object is zero as it is released from rest.
		. True.		
I	IV.	Assertio	n a	nd reason type questions :
				ssertion & reason are true and the reason is the correct explanation of
		the as		
				ssertion & reason are true but the reason is not correct explanation of
		the as		•
		(c) If ass	erti	on is true but reason is false.
		(d) If ass	erti	on & reason both are false.
		(e) If ass	erti	on is false but reason is true.
	1.	Assertion	:	
				instant of time.
		Reason	:	A body is momentarily at rest when it reverses its direction of motion. [Ans. (a) Both assertion & reason are true and the reason is the
	2	Assortion		correct explanation of the assertion] If the displacement of the body is zero, the distance covered by it may
	2.	Assertion	•	not be zero.
		Reason		Displacement is a vector & distance is a scalar quantity.
		ICCU 5011		[Ans. (a) Both assertion & reason are true and the reason is the
				correct explanation of the assertion]
	3.	Assertion		· · · · · · · · · · · · · · · · · · ·
		Reason		Speed is a scalar but velocity is vector.
				[Ans. (a) Both assertion & reason are true and the reason is the
				correct explanation of the assertion]
4	4.	Assertion	:	The speed of a body can be Negative.
		Reason	:	If the body is moving in the opposite direction of positive motion,
				then its speed is Negative.
				[Ans. (d) Assertion & reason both are false]
!	5.	Assertion	:	
				body can have Negative slope
		Reason	:	When the speed of body decreases with time then, position-time

I, F graph of the moving body has Negative slope.

[Ans. (c) Assertion is true but reason is false]

Sura's O Physics - 9th Std O Unit 02 O MOTION

33

6 .	Assertion	:	A positive acceleration of a body can be associated with slowing down of the body.
	Reason	:	Acceleration is a vector.
			[Ans. (b) Both assertion & reason are true
			but the reason is not correct explanation of the assertion]
7.	Assertion	:	A negative acceleration of a body can be associated with speeding up of the body.
	Reason	:	Increase in speed of a moving body is independent of its direction of motion.
			[Ans. (b) Both assertion & reason are true but the reason is
			not correct explanation of the assertion]
8.	Assertion	:	When a body is subjected to an uniform acceleration, it is always move in a straight line.
	Reason	:	Motion may be straight line motion or circular motion.
			[Ans. (e) Assertion is false but reason is true]
9.	Assertion	:	Position-time graph of a stationary object is a straight line parallel to time axis.
	Reason	:	For a stationary object, position does not change with time.
			[Ans. (a) Both assertion & reason are true and the reason is the correct explanation of the assertion]
10.	Assertion	:	
	Reason	:	Slope of distance-time graph = speed of the body.
			[Ans. (a) Both assertion & reason are true and the reason
			is the correct explanation of the assertion]

V. Answer briefly :

1. What is centripetal acceleration and centripetal force?

Ans. When a body moves in a circular pattern the acceleration is directed radially towards the centre of the circle.

The force causing this acceleration is also directed towards the centre of the circle and it is called centripetal force.

2. Find the magnitude of centripetal force.

Ans. Consider an object of mass m, moving along a circular path of radius r, with a velocity v, its centripetal acceleration is given by

$$a = v^2 / r$$

Hence, the magnitude of centripetal force is given by,

 $F = mass \times centripetal acceleration$

$$F = mv^2 / r$$

3. What is centrifugal force? Give examples.

Ans. Force acting on a body away from the centre of circular path is called centrifugal force. Thus centrifugal force is in a direction opposite to the direction of centripetal force. Its magnitude is same as that of centripetal force.

Example : Spin dryer of a washing machine, ride on a merry-go-round.

orders@surabooks.com

O MOTION

v = u + at

- **4.** When an object is thrown upwards, what is true of velocity and acceleration at the highest point of motion of the object?
- Ans.(i) Velocity becomes zero
 - (ii) Acceleration remains same as g.
- **5.** Name the two quantities, the slope of whose graph gives (i) speed (ii) acceleration.
- Ans. (i) Distance Time
 - (ii) Speed Time

6. Define Average speed.

Ans. It is the total distance travelled divided by the total time taken to cover this distance.

Average speed = $\frac{\text{Total distance travelled}}{\frac{1}{2}}$

total time taken

7. What do you infer if

- (i) Distance time graph is straight line.
- (ii) Velocity time graph is curved.
- (iii) Displacement time is zig zag.

Ans. (i) Speed is constant.

- (ii) Acceleration is not uniform.
- (iii) Non uniform velocity.

8. Give the formula for each.

- (i) Relation between initial, final velocity, acceleration and displacement in a uniformly accelerated straight line motion.
- (ii) Relation between initial, final velocity, acceleration & time in a uniformly accelerated straight line motion.
- (iii) Relation between initial velocity, acceleration, displacement and time.
- Ans. (i) Relation between initial, final velocity, acceleration & displacement in a uniformly accelerated straight line motion. $v^2 = u^2 + 2as$
 - (ii) Relation between initial, final velocity, acceleration & time in a uniformly accelerated straight line motion.
 - (iii) Relation between initial velocity, acceleration, displacement and time. $s = ut + \frac{1}{2}at^2$

9. What is the difference between uniform acceleration and non - uniform acceleration?

Ans.	Sl. No.	Uniform Acceleration	Non - Uniform Acceleration
	1.		It is the acceleration in which the
, 		object changes its velocity with	object changes its velocity with
		equal intervals of time.	unequal intervals of time.
	2.	eg. The motion of a ball rolling	A car travels 2 km in 1 st hour, 3 km
		down.	in 2^{nd} hour and 3.5 km in 3^{rd} hour.

35

 \otimes

Sura's O Physics - 9th Std O Unit 02 O MOTION

11. Define Acceleration.

Ans. Acceleration is the rate of change of velocity with respect to time or it is the rate of change of velocity in unit time. It is a vector quantity. The SI unit of acceleration is ms^{-2} .

VI. Paragraph Questions :

- **1.** Define acceleration and state its SI unit for motion along a straight line, when do we consider the acceleration to be (i) positive (ii) negative? Give an example of a body in uniform acceleration.
- Ans. Acceleration is the rate of change of velocity with respect to time or it is the rate of change of velocity in unit time. It is a vector quantity. The SI unit of acceleration is ms^{-2} .

Acceleration = Change in velocity/time
= (Final velocity – initial velocity)/time
$$a = \frac{v-u}{t}$$

If v > u, then 'a' is positive. If final velocity is greater than initial velocity, the velocity increase with time, the value of acceleration is positive.

If v < u, then a is negative. If final velocity is less than initial velocity **Example :** The motion of a freely falling body and vertically thrown up body are the examples of uniform acceleration.

The motion of ball rolling down on an inclined plane is another example.

2. Distinguish between uniform motion and non uniform motion.

Ans.	Sl. No.	Uniform Motion	Non - Uniform Motion
	1	An object is said to be in uniform motion if it covers equal distances in equal intervals of time.	If a body covers unequal distances in equal interval of time (or) equal distances in different interval of time
	2	example of uniform motion 'train'	example of non - uniform motion 'bus'

3. Define uniform circular motion and give example of it. Why is it called accelerated motion?

Ans. When an object moves with constant speed along a circular path, the motion is called uniform circular motion.

When an object is moving with a constant speed along a circular path, the change in velocity is only due to the change in direction. Hence it is accelerated motion. **Example:**

- 1. The Earth moves around the sun in the uniform circular motion.
- 2. The Moon moves in uniform circular motion around the Earth.

-	
5	

Sura's O Science - 9th Std O Unit 02 O MOTION

4. When a body is said to be in (i) uniform acceleration (ii) non - uniform acceleration?

- Ans. (i) A body is said to be in uniform acceleration if it travels in a straight line and its velocity increases or decreases by equal amounts in equal time intervals.
 - (ii) A body is said to be in non-uniform acceleration if the rate of change of its velocity is not constant i.e. differs in different time intervals.
- 6. What remains constant in uniform circular motion? And what changes continuously in uniform circular motion?
- Ans. (i) Speed remains constant in uniform circular motion.
 - (ii) Velocity changes continuously in uniform circular motion.

1. A bus speed decreases from 50 km/h to 40 km/h in 3s, find the acceleration of the bus.

Ans.

Initial speed (u) = 50 km/h =
$$\frac{50 \times 1000 \text{m}}{3600 \text{ sec.}} = \frac{250}{18} \text{ m/s}$$

Final speed (v) = 40 km/h = $\frac{40 \times 1000 \text{m}}{3600 \text{ sec}} = \frac{200}{18} \text{ m/s}$
Time taken (t) = 3s
 $v = u + at$
 $\therefore a = \frac{v - u}{t} = \frac{-50}{18 \times 3} = -0.925 \text{ ms}^{-2}$

(Negative) acceleration = -0.925ms⁻²

A car starting from rest moves with uniform acceleration of 0.2 ms⁻² for 3 min.
 Fine the (a) speed acquired (b) the distance travelled.

Ans. Initial speed
$$(u) = 0 \text{ m/s}$$

Acceleration $(a) = 0.2 \text{ ms}^{-2}$
Time taken $(t) = 3 \text{ min} = 3 \times 60 = 180 \text{ s}$
Final velocity $(v) = ?$
Distance covered $(s) = ?$
 $v = u + at = 0 + 0.2 \times 180 = 36 \text{ m/s}$
 $v = 36 \text{ m/s}$
 $s = ut + \frac{1}{2} at^2 = 0 + \frac{1}{2} \times 0.2 \times (180)^2$
 $= 0.1 \times 32400 = 3240 \text{ m}$

3. A train is travelling at a speed of 90 kmh⁻¹. Brakes are applied so as to produce a uniform acceleration of -0.5 ms⁻², find how far the train will go before it is brought to rest.

Ans. Initial velocity of train (u) =
$$90 \text{ km/h} = \frac{90,000 \text{ m}}{3,600 \text{ sec}} = 25 \text{ ms}^{-1}$$

Final velocity (v) = 0 ms^{-1}
Acceleration (a) = -0.5 ms^{-2}

orders@surabooks.com

Sura's O Physics - 9th Std O Unit 02 O MOTION

$$v^2 = u^2 + 2 as$$

 $\Rightarrow s = (v^2 - u^2) / 2a = (0^2 - 25^2) / -(2 \times 0.5)$
 $s = \frac{-625}{-1} = 625 m$
 $s = 625 m$

- 4. In a long distance race the athletes were expected to take four rounds of the track such that the line of finish was same as the line of start. Suppose the length of the track was 300m, C B
 - (i) What is the total distance to be covered by the athletes?
 - (ii) What is the total displacement of the athletes when they touch the finish line?
 - (iii) Is the motion of the athletes uniform or nonuniform?
 - (iv) Is the displacement & distance moved by athlete at the end of the race equal?

Ans.

- (i) Total distance covered = $4 \times 300 = 1200$ m
- (ii) Displacement = 0 [final position initial position]
- (iii) Non uniform.

: the direction of motion is changing while running on the track.

- (iv) Both are not equal.
- **5.** Ram swims in a 80m long swimming pool. He covers 160m in 1 min by swimming from one end to the other and back along the same straight pattern. Find the average speed and average velocity.

Ans. Total distance = 160m Total displacement = 0 Time taken (t) = 1 min = 60s Average speed ($s_{average}$) = $\frac{\text{total distance}}{\text{total time taken}}$ $s_{average}$ = $\frac{160}{60}$ = 2.66 m/s Average velocity ($v_{average}$) = $\frac{\text{total displacement}}{\text{total time taken}}$ = $\frac{0}{60}$ = 0 m/s.

- 6. A bus from Chennai travels to Trichy passes 100 km, 160 km at 10.15 am, 11.15 am respectively. Find the average speed of the bus during 10.15 11.15 am.
- Ans. The distance covered between 10.15am & 11.15 am = 160 100= 60 kmThe time interval = 1 hAverage speed = $\frac{60}{1}$ = 60 km/h

0

Ph:9600175757 / 8124201000

300m

Starting point

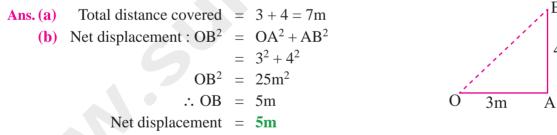
38

Sura's O Science - 9th Std O Unit 02 O MOTION

7. In a distance - time graph of two objects A & B, which object is moving with greater speed when both are moving?

Ans. Object B makes a longer angle with the time - axis. Its slope is greater than the slope of the object A. Thus the speed of B is greater than that of A.

- 8. Find the distance covered by a particle during the time interval t = 0 to t = 20sfor which the speed - time graph is shown in figure.
- **Ans.** Distance covered in the time interval 0 to 20s is equal to the area of the triangle OAB.


Area of \triangle OAB. $\frac{1}{2} \times$ base \times height $\frac{1}{2} \times 20 \times 20 = 200 \text{ ms}^{-1}$

9. A car moves 30 km in 30 min and the next 30 km in 40 min. Calculate the average speed for the entire journey.

Total time taken = 30 + 40 = 70 min. = $\frac{70}{60}$ hour Ans. Total distance = 30 + 30 = 60 km Average speed, $v_{\text{average}} = \frac{\text{Total distance}}{\text{Time taken}} = \frac{60}{\underline{70}} = \frac{3600}{\overline{70}} = 51.4 \text{ km/h}$

10. A boy travels a distance of 3m due east and then 4m due north.

- (a) How much is the total distance covered?
- (b) What is the magnitude of the displacement?

11. During an experiment, a signal from a spaceship reached the ground station in five seconds. What was the distance of the spaceship from the ground station? The signal travels at the speed of light that is 3×10^8 ms⁻¹.

Time taken = 5 seconds. Ans. Speed of signal $u = 3 \times 10^8 \text{ m/s}$ Distance = ?Distance Speed = Time \therefore Distance = Speed \times Time Distance = $3 \times 10^8 \times 5 = 15 \times 10^8$ m.

orders@surabooks.com

15 -(m) 10 5 10 Time (s) -

B

4m

39

Sura's O Physics - 9th Std O Unit 02 O MOTION

12. A train travelling at a speed of 90kmph. Brakes are applied so as to produce a uniform acceleration of -0.5 ms^{-2} . Find how far the train will go before it is brought to rest?

Ans. Here we have

Initial velocity,
$$u = 90 \text{ km/h}$$

$$= \frac{90 \times 1000 \text{m}}{60 \times 60 \text{s}} = 25 \text{m/s}$$
Final velocity, $v = 0$
Acceleration, $a = -0.5 \text{ m/s}^2$
Thus, distance travelled = ?
We know that, $v^2 = u^2 + 2as$
 $\Rightarrow 0 = 25 \text{ m/s}^2 + 2 \times -0.5 \text{ m/s}^2 \times s$
 $= 625 \text{ m}^2/\text{s}^2 - 1 \text{m/s}^2 \times s$
 $\Rightarrow 1 \text{ ms}^{-2}s = 625 \text{ m}^2s^{-2}$
 $s = \frac{625 \text{m}^2\text{s}^{-2}}{1 \text{ms}^{-2}} = 625 \text{ m}$

... Train will go 625m before it is brought to rest

13. The adjacent diagram shows the velocity time graph of a body.

a) During what time interval is the motion of the body accelerated?

Ans. At 0 to 4 second

b) Find the acceleration in the time interval mentioned in part 'a'.

Ans.
$$a = \frac{v - u}{t} = \frac{30 - 0}{4} = 7.5 \text{ m/s}^2$$

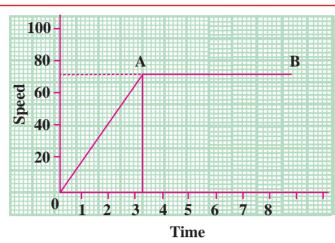
c) What is the distance travelled by the body in the time interval mentioned in part 'a'?

Ans. Distance travelled = Area under the graph

= Area of the triangle = $\frac{1}{2}bh$

$$= \frac{1}{2} \times 4 \times 30 = 60 \text{m}$$

- **14.** The following graph shows the motion of a car. What do you infer from the graph along OA and AB? What is the speed of the car along AB and what time it reached this speed.
 - a) What do you infer from the graph along OA and AB


Ans. Graph along OA : The car travels with uniform acceleration and uniform motion.

Graph along AB : The car travels with constant speed and unaccelerated motion.

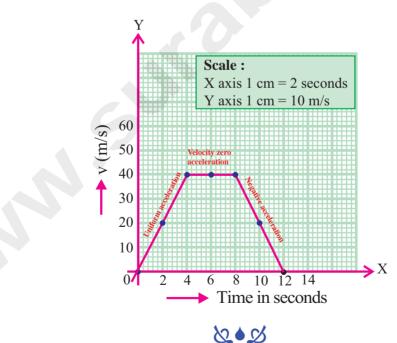
40

Ans.

Sura's O Science - 9th Std O Unit 02 O MOTION

b) What is the speed of the car along AB?

Ans. Along AB : The speed of the car is constant.


From the graph, it seems the speed along AB is 72 km/hr.

c) What time it reached this speed

Ans. It reaches this speed after 3.2 hours, that is, 3 hours, 12 minutes.

15. From the following table, check the shape of the graph.

Time (s)	0	2	4	6	-8	10	12
Velocity (ms ⁻¹)	0	20	40	40	40	20	0

