# ELECTRONICS & COMMUNICATION ENGINEERING

## **1. Analog & Digital Electronics and Circuits**

**M** 

5.

6.

ၜ

0\_

1. Assertion (A): In avalanche breakdown, the reverse current sharply increases with voltage due to a field emission.

Reason (R): The field, emission requires highly doped p and n regions.

- **A)** Both A and R are true and R is the correct explanation of A
- **B)** Both A and R are true but R is NOT the correct explanation of A
- C) A is true but R is false
- **D)** A is false but R is true
- Assertion (A): In small signal class 'A' amplifier, the output is a magnified replica of the input without any change in frequency. Reason (R): The dc operating point is fixed in class 'A' position.
  - **A)** Both A and R are true and R is the correct explanation of A
  - **B)** Both A and R are true but R is NOT the correct explanation of A
  - C) A is true but R is false
  - **D)** A is false but R is true
- 3. Assertion (A): D-latch and edge-triggered D-flip flop (FF are functionally different. Reason (R): In D-latch the output (O) can change while enable (EN) is high. In D-FF the output can change only on the active edge of CLK.
  - A) Both A and R are true and R is the correct explanation of A
  - **B)** Both A and R are true but R is NOT the correct explanation of A
  - C) A is true but R is false
  - **D)** A is false but R is true
- 4. Assertion (A): D-flip flops are used to construct a buffer register. Reason (R): Buffer registers are used to store
  - a binary word temporarily.
  - 1. (D) 2. (C) 3. (A)

- A) Both A and R are true and R is the correct explanation of A
- **B)** Both A and R are true but R is NOT the correct explanation of A
- **C)** A is true but R is false

(୦)୍ଗ

୍୭

- **D)** A is false but R is true
- Assertion (A): Linear AM detector applied with two amplitude-modulated waves simultaneously, one being very weak with respect to the other, detects only the strong signal. Reason (R): Detector selectivity is increased in the presence of strong signal.
  - A) Both A and R are true and R is the correct explanation of A
  - **B)** Both A and R are true but R is NOT the correct explanation of A
  - **C)** A is true but R is false
  - **D)** A is false but R is true
- Assertion (A): Coherent FSK system is preferred over non-coherent FSK.

Reason (R): Coherent FSK requires less power than non-coherent FSK.

- A) Both A and R are true and R is the correct explanation of A
- **B)** Both A and R are true but R is NOT the correct explanation of A
- C) A is true but R is false
- **D)** A is false but R is true
- 7. Assertion (A): High frequency power supplies are light weight.

Reason (R): Transformer size get reduced at high frequency.

- **A)** Both A and R are true and R is the correct explanation of A
- **B)** Both A and R are true but R is NOT the correct explanation of A
- $\textbf{C)} \quad A \text{ is true but } R \text{ is false}$
- $\textbf{D} \textbf{)} \hspace{0.1in} A \hspace{0.1in} \text{is false but } R \hspace{0.1in} \text{is true} \\$

7. (B)

3. (A) 4. (A) 5. (D)



6. (B)

Click Here to Learn more : https://bit.ly/2VTTlbV

#### Click Here to Learn more : https://bit.ly/2VTTlbV

#### **SURA'S** • Electronics and Communication Engineering

- 8. A specimen of intrinsic germanium with the density of charge carries of  $2.5 \times 10^{13}$ /cm<sup>3</sup>, is doped with donor impurity atoms such that there is one donor impurity atom for ever  $10^6$  germanium atoms. The density of germanium atoms is  $4.4 \times 10^{22}$ /cm<sup>3</sup>. The hole density would be
  - **A)**  $4.4 \times 10^{16} / \text{ cm}^3$
  - **B)**  $1.4 \times 10^{10}$  / cm<sup>3</sup>
  - **C)**  $4.4 \times 10^{10}$  / cm<sup>3</sup>
  - **D)**  $1.4 \times 10^{16}$  / cm<sup>3</sup>
- 9. In a forward biased photo diode, an increase in incident light intensity causes' the diode current to
  - A) Increase B) Remain constant
  - C) Decrease
  - **D)** Remain constant while the voltage drop across the diode increases
- 10. If for intrinsic Silicon at  $27^{\circ}$ C, the charge concentration and mobilities of free electrons and holes are  $1.5 \times 10^{16}$  per m<sup>3</sup>,  $0.13m^2/(Vs)$  and  $0.05 m^2/(Vs)$  respectively, its conductivity will be
  - **A)**  $2.4 \times 10^{-3}$  ( $\Omega$  -m)<sup>-1</sup>
  - **B)**  $3.15 \times 10^{-3}$  (  $\Omega$  -m)<sup>-1</sup>
  - **C)**  $5 \times 10^{-4} (\Omega m)^{-1}$
  - **D)**  $4.32 \times 10^{-4}$  (  $\Omega$  -m)<sup>-1</sup>
- 11.



A circuit using the .BJT is shown in the above figure, the value of  $\beta$  is

- A)
   120
   B)
   150

   C)
   165
   D)
   166
- 12. Bridge rectifiers are preferred becauseA) They require small transformer
  - B) They have less peak inverse voltage
  - **C)** They need small transformer and also
  - have less peak inverse voltage
  - **D)** They have low ripple factor



For the circuit shown in the above figure  $h_{11}$ ,

- $\mathbf{h}_{_{12}},\,\mathbf{h}_{_{21}}$  and  $\mathbf{h}_{_{22}}$  are respectively
- **A)** 0.5, 0.5, 0.125 and 6
- **B)** 6, 0.5, 0.5 and 0.125
- **C)** 0.5, 0.5, 6 and 0.125
- **D)** 0.125, 6, 0.5 and 0.5
- 14. In an RC coupled amplifier, the gain decreases in the frequency response due to the
  - A) Coupling capacitor at low frequency and bypass capacitor at high frequency
  - **B)** Coupling capacitor at high frequency arid bypass capacitor at low frequency
  - C) Coupling junction capacitance at low frequency and coupling capacitor at high frequency
  - D) Device junction capacitor at high frequency and coupling capacitor at low frequency
- 15. The Darlington pair has a current gain of approximately  $\beta^{2}$ , the voltage gain AV, the input resistance Ri and the output resistance  $R_{0}$ . when the Darlington pair is used in the emitter follower configuration,  $A_{v}$ ,  $R_{i}$  and  $R_{0}$  are respectively
  - A) Very large, very large and very small
  - B) Unity, very large and very small
  - C) Unity, very small and very large
  - D) Very large, very small and very large

8. (D) 9. (D) 10. (D) 11. (C) 12. (C) 13. (B) 14. (D) 15. (B)

2

### Click Here to Learn more : https://bit.ly/2VTTIbV

| 16. | Match List I with List II and select the<br>correct answer:<br>List I<br>a. h <sub>ie</sub><br>b. h <sub>fe</sub><br>c. h <sub>re</sub><br>d. h <sub>oe</sub><br>List II (Units/delimitations) |                                                                |                                                                                |                                                                                                           |                                                                                                                   |     | <ul> <li>19. "Slope overload" occurs in delta modulation when the</li> <li>A) Frequency of the clock pulses is too low</li> <li>B) Rate of change of analog waveform is too large</li> <li>C) Step size is too small</li> <li>D) Analog signal varies very slowly with time</li> </ul>                                                                                                   |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | 1. Cu<br>2. Oh<br>3. Sie<br>4. Vo<br>Code<br>A)<br>B)<br>C)<br>D)                                                                                                                              | rrrent<br>ams<br>emen<br>ltage<br>s:<br>a)<br>2<br>1<br>1<br>2 | t tra<br>s<br>tra<br>b)<br>1<br>2<br>2<br>1                                    | nsfe<br>nsfe<br>c)<br>3<br>4<br>3<br>4                                                                    | r ratio<br>d)<br>4<br>3<br>4<br>3                                                                                 | 20. | The slew rate of an op-amp is 0.5V/micro<br>sec. The maximum frequency of a sinusoidal<br>input of 2 V rms that can be handled without<br>excessive distortion is<br>A) 3kHz B) 30kHz<br>C) 200kHz D) 2MHz<br>V <sub>S</sub> O<br>V <sub>S</sub> O<br>V <sub>S</sub> O<br>V <sub>S</sub> O<br>V <sub>S</sub> O<br>V <sub>S</sub> O<br>V <sub>S</sub> O                                   |  |
| 17. | An au<br>$4 \Omega g$<br>6 V (i)<br>deliv<br>A) 1<br>C) 2<br>Input<br>For t<br>$\beta = 1$<br>be in<br>A) C<br>B) In<br>C) A<br>D) S                                                           | mplif<br>gives<br>rms).<br>er to<br>.5 W<br>.4 W<br>           | ier l<br>an<br>Th<br>a lo<br>rcui<br>or th<br>f req<br>se ac<br>e reg<br>ation | avi<br>ope<br>e ma<br>bad i<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | ng an output resistance of<br>n circuit output voltage of<br>aximum power that it can<br>s<br>B) 2.25 W<br>D) 9 W | 22. | An op-amp is used in the circuit as shown in<br>the above figure. Current $I_0$ is<br>A) $V_s \times \frac{R_L}{R_S(R_L + R_S)}$<br>B) $V_s R_s$<br>C) $V_s R_L$<br>D) $V_s \left(\frac{1}{R_S} + \frac{1}{R_L}\right)$<br>A circuit with op-amp is shown in the above<br>figure. The voltage $V_0$ is<br>A) $3Vs_1 - 6Vs_2$ B) $2Vs_1 - 3Vs_2$<br>C) $2Vs_1 - 2Vs_2$ D) $3Vs_1 - 2Vs_2$ |  |
| 1   | 6. (A)                                                                                                                                                                                         | 17                                                             | . (D)                                                                          | )                                                                                                         | 18. (D) 19. (C) 20. (B)                                                                                           | 21. | (B) 22. (D)                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                                                                                                                                                                                                |                                                                |                                                                                |                                                                                                           |                                                                                                                   | 3)= |                                                                                                                                                                                                                                                                                                                                                                                          |  |

**SURA'S** • Electronics and Communication Engineering

#### Click Here to Learn more : https://bit.ly/2VTTlbV

#### **SURA'S** • Electronics and Communication Engineering

27.

- 23. A sinusoidal waveform can be converted to a square waveform by using a
  - A) Two stage transistorized over driven amplifier
  - B) Two stage diode detector circuit
  - **C)** Voltage comparator based on op-amp
  - **D)** Regenerative voltage comparator circuit



For the circuit shown in the above figure, by assuming  $\beta = 200$  and  $V_{\rm BE} = 0.7$ V, the best approximation for the collector current Ic in the active region is

- **A)** 1 mA **B)** 2.4 mA
- **C)** 3 mA **D)** 9.6 mA
- 25. High power efficiency of the push-pull amplifier is due to the face that
  - A) Each transistor conducts on different cycle of the input
  - B) Transistors are placed in CE configuration
  - **C)** There is no quiescent collector current
  - **D)** Low forward biasing voltage is required









The Schmitt trigger circuit is shown in the above figure. If  $V_{sat} = \pm 10$  V, the tripping point for the increasing input voltage will be

| A) | 1 V     | <b>B)</b> 0.893 V               |
|----|---------|---------------------------------|
| 0  | 0 47757 | $\mathbf{D} = 0.416 \mathbf{V}$ |

| 0 | 0.477V | <b>D</b> ) 0.410V |
|---|--------|-------------------|
|   |        |                   |

**28.** In Boolean Algebra, If  $F = (A + B)(\overline{A} + C)$ , then

A) 
$$F = AB + AC$$
 B)  $F = AB + \overline{AB}$   
C)  $F = AC + \overline{A}B$  D)  $F = AA + \overline{A}B$ 

29.



A switch circuit using the transistor is shown in the above figure. Assume hFE(min) = 20 and f $\tau$  = 100MHz. The most dominant speed limitation is brought by

| A) | Rise time    | <b>B)</b> Fall time  |
|----|--------------|----------------------|
| C) | Storage time | <b>D)</b> Delay time |

28. (C)

29. (A)