This is only for Sample

 for Full Book order Online and Available at All Leading Bookstores
SURO's

Mathematics $11^{\text {th }}$ Standard

VOLUME - I \& II

Based on the New Syllabus and New Textbook

Salient Jeatures

- Prepared as per the updated New Textbook.

Exhaustive Additional Questions \& Answers in all chapters.
Govt. Model Question Paper-2018 [Govt. MQP-2018], First Mid-Term Test (2018)
[First Mid-2018], Quarterly Exam - 2018 [QY-2018], Half Yearly Exam - 2018 [HY-2018], March Question Paper - 2019[March - 2019], June Question Paper - 2019[June - 2019],Quarterly Exam - 2019 [QY-2019], Half Yearly Exam - 2019 [HY-2019] are incorporated at appropriate sections.
Govt. Model Question Paper
June - 2019 Question Paper
Common Quarterly Examination 2019 Question Paper
Common Half Yearly Examination 2019 Question Paper
Public Examination March - 2020 Question Paper with answers

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

CONTENTS

Volume - I

1. Sets, Relations and Functions 1-32
2. Basic Algebra 33-62
3. Trigonometry 63-120
4. Combinatorics and Mathematical Induction 121-154
5. Binomial Theorem, Sequences And Series 155-182
6. Two Dimensional Analytical Geometry 183-218
Volume - II
7. Matrices and Determinants 219-254
8. Vector Algebra-I 255-288
9. Differential Calculus - Limits and Continuity 289-320
10. Differential Calculus -Differentiability and Methods of Differentiation 321-350
11. Integral Calculus 351-384
12. Introduction to probability theory 385-407
Govt. Model Question Paper 408-410
June 2019 Question Paper 411-413
Common Quarterly Examination 2019 Question Paper 414-416
Common Half Yearly Examination 2019 Question Paper 417-419
Public Examination March 2020 Question Paper 420-428

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

Volume - I

MATHEMATICS

$11^{\text {th }}$ Standard

MUST KNOW DEFINITIONS

Empty set
Finite set Infinite set Singleton set
Equivalent set
Equal sets
Subset
Proper subset
Power set
Universal set

Union
Intersection
Complement of a set I

Disjoint sets
Open interval
Closed interval
Neighbourhood of a point

A set is a collection of well defined objects.
Type of sets
: A set containing no element.
: The number of elements in the set is finite.
: The number of elements in the set is not finite.
: A set containing only one element.
: Two sets having same number of elements.
: Two sets exactly having the same elements.
: A set X is a subset of Y if every element of X is also an element of $Y .(X \subseteq Y)$
: X is a proper subset of Y if $X \subseteq Y$ and $X \neq Y$.
: The set of all subsets of A is the power set of A.
: The set contains all the elements under consideration

Algebra of sets

: The union of two sets A and B is the set of elements which are either in A or in $B(A \cup B)$
: The intersection of two sets A and B is the set of all elements common to both A and $\mathrm{B}(\mathrm{A} \cap \mathrm{B})$.
The set of all elements of U (Universal set) that are not elements of A. (A') Set different(A\B) or (A - B)
The difference of the two sets A and B is the set of all elements belonging to A but not to B
: Two sets A and B are said to be disjoint if there is no element common to both A and B.
: The set $\{x: a<x<\mathrm{b}\}$ is called an open interval and denoted by (a, b)
: The set $\{x: a \leq x \leq \mathrm{b}\}$ is called a closed interval and denoted by $[a, b]$
: Let a be any real number. Let $\in>0$ be arbitrarily small real number. Then ($a-\epsilon, a+\epsilon$) is called an " ϵ " neighbourhood of the point a and denoted by $\mathrm{N}_{a, \epsilon}$

> This is only for Sample for Full Book order Online and Available at All Leading Bookstores

$$
\begin{aligned}
& =\frac{\not\left(\frac{5 x-160}{\ngtr}\right)+160}{5}: \\
& =\frac{5 x-160+160}{5}=\frac{\not x x}{\not p}=x \\
\text { and } f o g(y) & =f(g(y))=f\left(\frac{9 y+160}{5}\right) \\
=\frac{\not p\left(\frac{9 y+160}{\not x}\right)-160}{9}: & =\frac{9 y+160-160}{9}=y
\end{aligned}
$$

Thus $g o f=\mathrm{I}_{x}$ and $f o g=\mathrm{I}_{y}$.
This implies that f and g are bijections and inverses to each other.

$$
f^{-1}(y)=\frac{9 y+160}{5}
$$

Replacing y by x, we get $f^{-1}(x)=\frac{9 x+160}{5}=\frac{9 x}{5}+32$
20. A simple cipher takes a number and codes it, using the function $f(x)=3 x-4$. Find the inverse of this function, determine whether the inverse is also a function and verify the symmetrical property about the line $y=x$ (by drawing the lines).
Solution: Given $f(x)=3 x-4$

$$
\begin{aligned}
& \text { Let } y=3 x-4 \Rightarrow y+4=3 x \\
& \Rightarrow \quad x=\frac{y+4}{3} \\
& \text { Let } g(y)=\frac{y+4}{3} . \\
& \text { Now } \operatorname{gof}(x)=g(f(x))=g(3 x-4) \\
& =\frac{3 x-A+A}{3}=\frac{\not z x}{\not{ }^{\prime}}=x \\
& \text { and } f \circ g(y)=f(g(y))=f\left(\frac{y+4}{3}\right) \\
& =\not p\left(\frac{y+4}{\not p}\right)-4=y+\not A-\not A=y
\end{aligned}
$$

Thus, $g o f(x)=\mathrm{I}_{x}$ and $\operatorname{fog}(y)=\mathrm{I}_{y}$.
This implies that f and g are bijections and inverses to each other.
Hence f is bijection and $f^{-1}(y)=\frac{y+4}{3}$
Replacing y by x, we get $f^{-1}(x)=\frac{x+4}{3}$.

Hence, the graph of $y=f^{-1}(x)$ is the reflection of the graph of f in $y=x$

Exercise 1.4

1. For the curve $y=x^{3}$ given in figure draw,
(i) $y=-x^{3}$
(ii) $y=x^{3}+1$
(iii) $y=x^{3}-1$
(iv) $y=(x+1)^{3}$
with the same scale.
Solution: (i) $y=-x^{3}$.
[Qy-2019]

Basic Algebra

MUST KNOW DEFINITIONS

Rational numbers		Any number of the form $\frac{p}{q}$, where $q \neq 0$ is called a real number where $p, q \in \mathrm{R}$

$$
\begin{equation*}
z=e^{k(a-b)} \tag{2}
\end{equation*}
$$

(i)

$$
x y z=e^{k(b-c)} \cdot e^{k(c-a)} \cdot e^{k(a-b)}
$$

$$
=e k^{(\not b)-\not b+\not k-\not a+\not a-\not b)}
$$

$$
=e^{k(0)}
$$

$$
=e^{0}=1
$$

$$
\Rightarrow \quad x y z=1
$$

(ii) $x^{a} y^{b} z^{c}=1$

$$
\begin{aligned}
x^{a} y^{b} z^{c} & =\left[e^{k(b-c)}\right]^{a} \cdot\left[e^{k(c-a)}\right]^{b} \cdot\left[e^{k(a-b)}\right]^{c} \\
& =e^{k(b-c) \cdot a} \cdot e^{k(c-a) \cdot b} \cdot e^{k(a-b) \cdot c} \\
& =e k^{\left(a b-\not b c+b c-\not a b+\not{ }^{\prime} c-b c\right)} \\
& =e^{k(0)}=e^{0}=1 \\
\Rightarrow \quad x^{a} y^{b} z^{c} & =1
\end{aligned}
$$

Hence proved

I

Trigonometry

MUST KNOW DEFINITIONS

textual questions

Exercise 3.1

1. Identify the quadrant in which an angle of each given measure lies:
(i) 25°
(ii) 825°
(iii) -55°
(iv) 328°
(v) -230°

Solution :

(i) $\quad \mathbf{2 5}^{\circ}$
$\sin 25^{\circ}$, is an acute angle, 25° lies in the I quadrant.

(ii) $\mathbf{8 2 5}{ }^{\circ}$
$825^{\circ}=2 \times 360+\underline{105}^{\circ}$
After two complete rounds the angle is 105° which lies between 90° and 180°
$\therefore 825^{\circ}$ lies in the II quadrant

(iii) $\quad-55^{\circ}$

Since the given angle is negative, it moves in the clockwise direction.
$\therefore-55^{\circ}$ lies in the IV quadrant

(iv) 328°
$328^{\circ}=270^{\circ}+58^{\circ}$.
$\therefore 328^{\circ}$ lies in the IV quadrant

(v) $\quad \mathbf{- 2 3 0}{ }^{\circ}$
$-230^{\circ}=-180^{\circ}+\left(-50^{\circ}\right)$
$\therefore-230^{\circ}$ lies in the II quadrant.

2. For each given angle, find a co-terminal angle with measure of θ such that $0^{\circ} \leq \theta \leq 360^{\circ}$
(i) 395°
(ii) 525°
(iii) 1150°
(iv) -270°
(v) -450°

Solution :

(i) 395°

$$
\begin{aligned}
395^{\circ} & =360^{\circ}+35^{\circ} \\
\Rightarrow \quad 395-35^{\circ} & =360^{\circ}
\end{aligned}
$$

\therefore Co-terminal angle for 395° is 35°.
(ii) $\mathbf{5 2 5}^{\mathbf{}}$

$$
\begin{aligned}
525^{\circ} & =360+165^{\circ} \\
\Rightarrow \quad 525^{\circ}-165^{\circ} & =360^{\circ}
\end{aligned}
$$

\therefore Co-terminal angle of 525° is 165°
(iii) $\mathbf{1 1 5 0}^{\mathbf{}}$

$$
\begin{aligned}
& 1150^{\circ}=360+360+360^{\circ}+70^{\circ} \\
&=3 \times 360^{\circ}+70^{\circ} \\
& \Rightarrow 1150^{\circ}-70^{\circ}=3 \times 360^{\circ} \\
& \therefore \text { Co-terminal angle of } 1150^{\circ} \text { is } 70^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(60 \times \frac{1}{\not 20}\right)=30 \mathrm{~km} \\
\Rightarrow \quad \mathrm{PA} & =30 \mathrm{~km}
\end{aligned}
$$

Speed take by the $\mathrm{II}^{\text {nd }}$ vehicle $=80 \mathrm{~km} / \mathrm{hr}$

Given $\angle \mathrm{APB}=60^{\circ}$
Using cosine formula,

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos \mathrm{C} . \\
\Rightarrow \quad c^{2} & =40^{2}+30^{2}-2(40)(30) \cos 60^{\circ} \\
c^{2} & =1600+900-\not 2(40)(30)\left(\frac{1}{2}\right) \\
& =2500-(40)(30)=1300 \\
\Rightarrow \quad c & =\sqrt{1300}=\sqrt{13 \times 100} \\
& =10 \sqrt{13} \mathrm{~km} .
\end{aligned}
$$

16. Suppose that a satellite in space, an earth station and the centre of earth all lie in the same plane. Let r be the radius of earth and R be the distance from the centre of earth to the satellite. Let d be the distance from the earth station to the satellite. Let 30° be the angle of elevation from the earth station to the satellite. If the line segment connecting earth station and satellite subtends angle α at the centre of earth, then prove that $d=\sqrt{1+\left(\frac{r}{R}\right)^{2}-2 \frac{r}{R} \cos \alpha}$.
Solution: Les S be the position of the satellite, E be the position of the earth station and C be the centre of the earth.

Given $\mathrm{CE}=r, \mathrm{CS}=\mathrm{R}$ and $\mathrm{SE}=d$
Given \backslash SCE $=\alpha$
In $\Delta \mathrm{SCE}$, applying cosine rule, we get

$$
\begin{aligned}
d^{2}= & r^{2}+\mathrm{R}^{2}-2(r)(\mathrm{R}) \cos \alpha \\
& {\left[\because c^{2}=a^{2}+b^{2}-2 a b \cos c\right] } \\
\Rightarrow \quad d^{2}= & r^{2}+\mathrm{R}^{2}-2 r \cdot \mathrm{R} \cdot \cos \alpha
\end{aligned}
$$

Dividing by R^{2} throughout we get,

$$
\begin{aligned}
& \frac{d^{2}}{\mathrm{R}^{2}}=\frac{r^{2}}{\mathrm{R}^{2}}+\frac{\mathrm{R}^{2}}{\mathrm{R}^{2}}-\frac{2 r \cdot \mathrm{R}}{\mathrm{R}^{2}} \cos \alpha \\
& \Rightarrow \quad \frac{d^{2}}{\mathrm{R}^{2}}=\frac{r^{2}}{\mathrm{R}^{2}}+1-\frac{2 r}{\mathrm{R}} \cos \alpha \\
& \Rightarrow \quad d^{2}=\mathrm{R}^{2}\left[1+\frac{r^{2}}{\mathrm{R}^{2}}-\frac{2 r}{\mathrm{R}} \cos \alpha\right]
\end{aligned}
$$

Taking positive square root both sides we get,

$$
\begin{aligned}
d & =\mathrm{R} \sqrt{1+\frac{r^{2}}{\mathrm{R}^{2}}-\frac{2 r}{\mathrm{R}}} \cos \alpha \\
\Rightarrow \quad d & =\mathrm{R} \sqrt{1+\left(\frac{r}{\mathrm{R}}\right)^{2}-2\left(\frac{r}{\mathrm{R}}\right) \cos \alpha}
\end{aligned}
$$

Hence proved.

Exercise 3.11

1. Find the principal value of
(i) $\sin ^{-1} \frac{1}{\sqrt{2}}$
(ii) $\cos ^{-1} \frac{\sqrt{3}}{2}$
(iii) $\operatorname{cosec}^{-1}(-1)$
(iv) $\sec ^{-1}(-\sqrt{2})$
(v) $\tan ^{-1}(\sqrt{3})$

Solution :

(i) $\sin ^{-1} \frac{1}{\sqrt{2}}$

Let $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=y$, where $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
$\Rightarrow \quad \sin y=\frac{1}{\sqrt{2}}$
$\Rightarrow \quad \sin y=\sin \frac{\pi}{4} \Rightarrow y=\frac{\pi}{4}$
Thus the principal value of $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$

MUST KNOW DEFINITIONS

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

20. Find the sum of all 4 -digit numbers that can be formed using digits $0,2,5,7,8$ without repetition?

Solution :

tho	hun	tens	unit
4	4	3	2

The gives digits are $0,2,5,7,8$
Number of 4 digit numbers that can be formed is $4 \times 4 \times 3 \times 2=96$.
Out of 96 , there will be 24 numbers ending with 0
18 numbers ending with 2
18 numbers ending with 5
18 numbers ending with 7
18 numbers ending with 8
\therefore Total for unit place is $(24 \times 0)+(18 \times 2)+$

$$
(18 \times 5)+(18 \times 7)+(18 \times 8)
$$

$=18(2+5+7+8)=18 \times 22=396$
\therefore Sum of all the 4 digit numbers $=396+3960+$
$39600+(24 \times 22) \times 1000=571956$

Exercise 4.3

1. If ${ }^{n} \mathrm{C}_{\mathbf{1 2}}={ }^{n} \mathrm{C}_{9}$ find ${ }^{21} \mathrm{C}_{\boldsymbol{n}}$

Solution: We have ${ }^{n} \mathrm{C} x={ }^{n} \mathrm{C} y \Rightarrow x=y \quad$ or $\quad x+y=n$

$$
\begin{aligned}
& \Rightarrow \quad 12+9=n \\
& \Rightarrow \quad n=21 \\
& \Rightarrow \quad{ }^{21} \mathrm{C}_{n}={ }^{21} \mathrm{C}_{21}=1
\end{aligned}
$$

$\left[\because n \mathrm{C}_{n}=1\right]$
2. If ${ }^{15} \mathrm{C}_{2 r-1}={ }^{15} \mathrm{C}_{2 r+4}$, find r.
[Qy - 2019]
Solution: Given ${ }^{15} \mathrm{C}_{2 r-1}={ }^{15} \mathrm{C}_{2 r+4}$
Since ${ }^{n} \mathrm{C}_{x}={ }^{n} \mathrm{C}_{y} \Rightarrow x=y$ or $x+y=n$
We get $2 r-1=2 r+4$
$\Rightarrow \quad-1 \neq 4$ which is not possible (or)

$$
\begin{aligned}
2 r-1+2 r+4 & =15 \\
4 r+3 & =15 \\
4 r & =12 \\
\Rightarrow \quad r & =\frac{12}{4}=3 \\
\therefore r & =3
\end{aligned}
$$

3. If ${ }^{n} \mathbf{P}_{r}=720$. If ${ }^{n} \mathrm{C}_{r}=\mathbf{1 2 0}$, find n, r. $\quad[\mathrm{Hy}-2019]$

Solution: Given ${ }^{n} \mathrm{P}_{r}=720$ and ${ }^{n} \mathrm{C}_{r}=120$

$$
\begin{align*}
\frac{n!}{(n-r)!} & =720 \tag{1}\\
\frac{n!}{r!(n-r)!} & =120 \tag{2}
\end{align*}
$$

$$
\Rightarrow \quad \frac{\frac{n!}{(n-r)!}}{\frac{n!}{r!(n-r)!}}=\frac{{ }^{60}}{720}
$$

[Dividing (1) by (2)]

$$
\begin{aligned}
\Rightarrow & \frac{n!}{(n-r)!} \times \frac{r!(n-r)!}{n!} & =6 \\
\Rightarrow & r! & =6 \\
\Rightarrow & r! & =3 \times 2 \times 1=3! \\
\Rightarrow & r & =3 .
\end{aligned}
$$

Substituting $r=3$ in (1) we get,

$$
\begin{aligned}
& & \frac{n!}{(n-r)!} & =720 \\
& & & \frac{n!}{(n-3)!}
\end{aligned}=720 .
$$

4. Prove that ${ }^{15} \mathrm{C}_{3}+2 \times{ }^{15} \mathrm{C}_{4}+{ }^{15} \mathrm{C}_{5}={ }^{17} \mathrm{C}_{5}$

Solution :

$$
\begin{aligned}
\text { LHS } & =\frac{15 \times 14 \times 13}{1 \times 2 \times 3}+2 \times \frac{15 \times 14 \times 13 \times 12}{1 \times 2 \times 3 \times 4}+\frac{15 \times 14 \times 13 \times 12 \times 11}{1 \times 2 \times 3 \times 4 \times 5} \\
& =\frac{15 \times 14 \times 13}{1 \times 2 \times 3}\left[1+\frac{24}{4}+\frac{132}{20}\right] \\
& =\frac{15 \times 14 \times 13}{1 \times 2 \times 3}\left[\frac{20+120+132}{20}\right] \\
& =\frac{15 \times 14 \times 13 \times 272}{1 \times 2 \times 3 \times 4 \times 5}=\frac{17 \times 16 \times 15 \times 14 \times 13}{1 \times 2 \times 3 \times 4 \times 5} \\
& ={ }^{17} \mathrm{C}_{5}=\text { RHS } \quad \text { Hence proved. }
\end{aligned}
$$

5. Prove that ${ }^{35} \mathbf{C}_{5}+\sum_{r=0}^{4}{ }^{(39-r)} \mathbf{C}_{4}={ }^{40} \mathbf{C}_{5}$

Solution: LHS $={ }^{35} \mathrm{C}_{5}+\sum_{r=0}^{4}{ }^{(39-r)} \mathrm{C}_{4}$

$$
\begin{aligned}
& ={ }^{35} \mathrm{C}_{5}+{ }^{39} \mathrm{C}_{4}+{ }^{38} \mathrm{C}_{4}+{ }^{37} \mathrm{C}_{4}+{ }^{36} \mathrm{C}_{4}+{ }^{35} \mathrm{C}_{4} \\
& =\left({ }^{35} \mathrm{C}_{5}+{ }^{35} \mathrm{C}_{4}\right)+{ }^{39} \mathrm{C}_{4}+{ }^{38} \mathrm{C}_{4}+{ }^{37} \mathrm{C}_{4}+{ }^{36} \mathrm{C}_{4} \\
& ={ }^{36} \mathrm{C}_{5}+{ }^{39} \mathrm{C}_{4}+{ }^{38} \mathrm{C}_{4}+{ }^{37} \mathrm{C}_{4}+{ }^{36} \mathrm{C}_{4} \\
& \quad\left[\because n \mathrm{C}_{r-1}+n \mathrm{C}_{r}=n+1 \mathrm{C}_{r}\right] \\
& =\left({ }^{36} \mathrm{C}_{5}+{ }^{36} \mathrm{C}_{4}\right)+{ }^{39} \mathrm{C}_{4}+{ }^{38} \mathrm{C}_{4}+{ }^{37} \mathrm{C}_{4}
\end{aligned}
$$

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

21. The number of 10 digit number that can be written by using the digits 2 and 3 is
(1) ${ }^{10} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{2}$
(2) 2^{10}
(3) $2^{10}-2$
(4) 10 !

Hint : Number of 10 digit number that can be written by using the digits 2 and 3 is 2^{10}
[Ans: (2) 2^{10}]
22. If P_{r} stands for ${ }^{r} \mathbf{P}_{r}$ then the sum of the series $1+\stackrel{r}{\mathrm{P}}_{1}+2 \mathrm{P}_{2}+3 \mathrm{P}_{3}+\ldots+n \mathrm{r}+\ldots$ is
(1) P_{n+1}
(2) $\mathrm{P}_{n+1}-1$
(3) $\mathrm{P}_{n-1}+1$
(4) ${ }^{(n+1)} \mathrm{P}_{(n-1)}$

Hint: $\quad 1+1\lfloor 1+2\lfloor 2+3\lfloor 3 \ldots+n\lfloor n=\mid n+1$
\Rightarrow Proof : Let $n=1$,
LHS $=1+1=2 ;$ RHS $=\lfloor 2=2$
It is true for $n=1$, in fact it is true for $n=0$ also let us assume that it is true for $n=k$

$$
\begin{array}{ll}
& 1+1\lfloor 1+2\lfloor 2+3\lfloor 3 \ldots .+n\lfloor n=\mid k+1 \\
\Rightarrow & \text { Then } 1+1\lfloor 1+2\lfloor 2+3\lfloor 3+\ldots .+k|k+(k+1)| k+1 \\
& |k+1+(k+1)| k+1=\lfloor k+1[1+k+1] \\
\Rightarrow & k k+1(k+2)=k+2
\end{array}
$$

It is true for $(k+1)$ also by mathematical induction, it is true for all values of $n \geq 0$, $n \in \mathbb{Z}$.
[Ans: (2) $\mathrm{P}_{n+1}-1$]
23. The product of first \boldsymbol{n} odd natural numbers equals
[Qy - 2018]
(1) ${ }^{2 n} \mathrm{C}_{n} \times{ }^{n} \mathrm{P}_{n}$
(2) $\left(\frac{1}{2}\right)^{n}{ }^{2 n} \mathrm{C}_{n} \times{ }^{n} \mathrm{P}_{n}$
(3) $\left(\frac{1}{4}\right)^{n} \times{ }^{2 n} \mathrm{C}_{n} \times{ }^{2 n} \mathrm{P}_{n}$
(4) ${ }^{n} \mathrm{C}_{n} \times{ }^{n} \mathrm{P}_{n}$

Hint: $1.3 .5 \ldots(2 n-1)=\frac{1 \cdot 2 \cdot 3 \cdot 4 \ldots(2 n-1)(2 n)}{2 \cdot 4 \ldots(2 n)}$

$$
\Rightarrow \frac{\underline{2 n}}{2^{n}\lfloor n}=\left(\frac{1}{2}\right)^{n} \cdot{ }^{2 n} \mathrm{C}_{n} \times{ }^{n} \mathrm{P}_{n}
$$

[Ans: (2) $\left(\frac{1}{2}\right)^{n}{ }^{2 n} \mathrm{C}_{n} \times{ }^{n} \mathrm{P}_{n}$]
24. If ${ }^{n} C_{4},{ }^{n} C_{5},{ }^{n} C_{6}$ are in AP the value of n can be
[Govt. MQP - 2018]
(1) 14
(2) 11
(3) 9
(4) 5

Hint: Given ${ }^{n} \mathrm{C}_{4},{ }^{n} \mathrm{C}_{5},{ }^{n} \mathrm{C}_{6}$ are in AP

$$
\begin{aligned}
& \Rightarrow \quad 2^{n} \mathrm{C}_{5}={ }^{n} \mathrm{C}_{4}+{ }^{n} \mathrm{C}_{6} \\
& \Rightarrow \quad \frac{2 \mid \not n}{|n-5| 5}=\frac{\lfloor\not n}{\lfloor n-4 \mid 4}+\frac{\underline{n}}{|n-6| 6}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{2}{\frac{|n-5| 5}{2}}=\frac{1}{\mid n-4.4}+\frac{1}{|n-6| 6} \\
& \Rightarrow \quad \frac{2(n-4) 6}{(n-4)|n-5| 5.6}=\frac{5.6}{\frac{n-4.5 .6 \mid 4}{(n-4)(n-5)}} \\
& \quad+\frac{(n)}{\boxed{6}(n-4)(n-5) \mid n-6} \\
& \Rightarrow \quad \frac{12(n-4)}{|n-4| 6}=\frac{30}{|n-4| 6}+\frac{(n-4)(n-5)}{|n-4| 6} \\
& \Rightarrow \quad 12 n \cdot 48=30+n^{2}-9 n+20 \\
& \Rightarrow \quad n^{2}-21 n+98=0 \Rightarrow(n-14)(n-7)=0 \\
& \Rightarrow \quad n=14 \text { (or) } n=7 . \quad[\text { Ans : (1) } 14]
\end{aligned}
$$

25. $1+3+5+7+\ldots .+17$ is equal to
(1) 101
(2) 81
(3) 71
(4) 61

Hint : $1+3+5+7+\ldots+17$ is equal to $9^{2}=81$

> [Ans: (2) 81]

GOVERNMENT EXAM QUESTIONS

SECTION - A (1 MARK)

CHOOSE THE CORRECT OR THE MOST SUITABLE ANSWER.

1. The number of diagonals of octogen will be
[Qy - 2019]
(1) 28
(2) 20
(3) 10
(4) 16

Hint : Number of diagonals $=8 \mathrm{C}_{2}-8=\frac{8 \times 7}{1 \times 2}$
$=28-8=20$
[Ans: (3) 20]
2. The number of words which can be formed from the letters of the word "MAXIMUM", if two consonents cannot occur together is
[Qy - 2019]
(1) 4 !
(2) $3!\times 4!(3)$
$7!$
(4) 5 !

Hint: In word MAXIMUM, there are 4 consonants $(\mathrm{M}, \mathrm{X}, \mathrm{M}, \mathrm{M})$ and three vowels $(\mathrm{A}, \mathrm{I}, \mathrm{U})$
.A.I.U. The dotted places to be filled by MXMM.
Hence required number of ways $3!\times \frac{4!}{3!}=4$!
[Ans: (1) 4!]
3. Value of $\frac{7!}{2!}$ is
[Qy - 2018]
(1) 2520
(2) 2250
(3) 2205
(4) 2052

Hint : $\begin{aligned} \frac{7!}{2!} & =\frac{1 \times \not 2 \times 3 \times 4 \times 5 \times 6 \times 7}{1 \times \not 2} \\ & =3 \times 4 \times 5 \times 6 \times 7=2520\end{aligned}$
[Ans: (1) 2520]

MUST KNOW DEFINITIONS

Binomial theorem for positive integral index	If x and a are real numbers, then for all $n \in \mathbb{N}$, $(x+a)^{n}=n \mathrm{C}_{0} x^{n} a^{0}+n \mathrm{C}_{1} x^{n-1} a^{1}+n \mathrm{C}_{2} x^{n-2} a^{2}+\ldots+n \mathrm{C}_{r} x^{n-r} a^{r}+\ldots+a^{n} .$
Sequence	A sequence is a function whose domain is the set N of natural numbers.
Series	If $a_{1}, a_{2}, \ldots a_{n}$ is a sequence, then the expression $a_{1}+a_{2}+a_{3}+\ldots+a_{n}$ is a series.
A.P	: A sequence is called an arithmetric progression (A.P) if the difference of a term and the previous term is always same.
G.P	: A sequence of non-Zero numbers is called a Geometric progression (G.P) if the ratio of a term and the term proceeding to it is always a constant.
H. P:	: The reciprocals of the terms of an, A.P form a H.P.
Arithmetico - geometric	: An AGP is a progression in which each term can be represented as the product of the terms of an AP and a G.P.

$$
\begin{aligned}
& =\frac{2 a+(2 k-2) d}{2} \\
& =a+(k-1) d=a k
\end{aligned}
$$

Therefore, a_{k} is the arithmetic mean of a_{k-1} and a_{k+1}.
7. Prove that $\sqrt{x^{2}+25}-\sqrt{x^{2}+9}=\frac{8}{x}$ nearly when x is large.
[Hy - 2019]
Solution: $\sqrt{x^{2}+25}-\sqrt{x^{2}+9}$

$$
\begin{aligned}
& =\sqrt{x^{2}\left(1+\frac{25}{x^{2}}\right)}-\sqrt{x^{2}\left(1+\frac{9}{x^{2}}\right)} \\
& =x\left(1+\frac{25}{x^{2}}\right)^{\frac{1}{2}}-x\left(1+\frac{9}{x^{2}}\right)^{\frac{1}{2}} \\
& =x\left(1+\frac{1}{2} \cdot \frac{25}{x^{2}}+\ldots\right)-x\left(1+\frac{1}{2} \cdot \frac{9}{x^{2}}+\ldots\right) \\
& =\frac{8}{x}+\ldots . .
\end{aligned}
$$

ADDITIONAL PROBLEMS

SECTION - A (1 MARK)

CHOOSE THE CORRECT OR THE MOST SUITABLE ANSWER.

1. The first and last term of an A. P. are 1 and 11. If the sum of its terms is 36 , then the number of terms will be
(1) 5
(2) 6
(3) 7
(4) 8

Hint :

$$
\begin{array}{rlrl}
\frac{n}{2}(a+l) & =36 \Rightarrow \frac{n}{2}(1+11)=36 \\
\Rightarrow & n & =6 & \\
& & {[\text { Ans : (2) 6] }}
\end{array}
$$

2. Choose the incorrect pair :
3. $\frac{d}{d x}(\sin x) \quad \cos x$
4. $\frac{d}{d x}(\tan x) \quad \sec ^{2} x$
5. $\frac{d}{d x}(\cos x) \quad \sin x$
6. $\frac{d}{d x} \log x \quad \frac{1}{x}$

Hint : $\frac{d}{d x}(\cos x)=-\sin x$ [Ans : (3) $\left.\frac{d}{d x}(\cos x)=\sin x\right]$
3. Match List - I with List II.

List I
i. \quad Sum to n terms of an A.P
ii. Sum to n terms of a G.P
iii. Sum of an n infinite G.P
(c) $\frac{1}{\frac{n}{2}(a+(n-1) d)}$
iv. Sum to n terms of a H.P
(d) $\frac{a}{1-r}$

The Correct match is

	(i)	(ii)	(iii)	(iv)	
(1)	b	a	d	c	
(2)	c	d	b	a	
(3)	d	c	a	b	
(4)	c	a	d	b	
			[Ans :	$(1) \mathrm{i}-\mathrm{b}$	ii -a
	iii -d	iv -c$]$			

4. Match List - I with List II.

List I

List II
i. $1+2+3+\ldots+n$
(a) $\frac{n(n+1)(2 n+1)}{6}$
ii. $1^{2}+2^{2}+3^{2}+\ldots+n^{2}$
(b) $\left(\frac{n(n+1)}{2}\right)^{2}$
iii. $\quad 1^{3}+2^{3}+3^{3}+\ldots+n^{3}$
(c) $\frac{n}{2}(2 a+(n-1) d)$
iv. $\begin{aligned} & a+(a+d)+a+2 d+\ldots+ \\ & a+(n-1) a\end{aligned}$
(d) $\frac{n(n+1)}{2}$

The Correct match is
(i)
(ii)
(iii)
(iv)
(1) d a b c
(2) c d b a
(3) b c d a
(4) d c b a
[Ans: (1) i-d ii-a iii-b iv-c]

Two dimensional Analytical Geometry

MUST KNOW DEFINITIONS

\|locus	The curve described by a point which moves under given conditions or condition called its locus.
Straight line	A straight line is a curve such that every point on the line segment joining any two points on it lies on it.
Slope or Gradien	The trigonometrical tangent of the angle that a line makes with the positive direction of the X - axis in the anti clock wise direction.

FORMULAE TO REMEMBER

$$
\text { 1. } m=\tan \theta
$$

$$
\text { 2. } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

3. $m=-\frac{\text { Co-efficient of } x}{\text { Co-efficient of } y}$

I) * Angle between two lines:

$$
\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \text { where } m_{1}, m_{2} \text { are slopes of the lines }
$$

I * Condition for parallel lines is $m_{1}=m_{2}$I
\|* Condition for perpendicular lines is $m_{1} m_{2}=-1$ I
|| * Equation of straight lines: I

1. Equation of X -axis is $y=0$ and equation of any lineparallel to X-axis is $y=k$.
2. Equation of Y-axis is $x=0$ and equation of any line parallel to y-axis is $x=k$, where K is the distancebetween the line and the Y -axisI
3. Slope point form: $y-y_{1}=m\left(x-x_{1}\right)$ I
4. Slope - intercept form: $y=m x+$ C. I
5. Two points form: $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
6. Intercepts form: $\frac{x}{a}+\frac{y}{b}=1$
7. Normal form: $x \cos \alpha+y \sin \alpha=p \quad \|$
8. Symmetric form/parametric form: $\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$
9. General form: $a x+b y+c=0$
10. Equation of pair of straight lines passing through the origin is $a x^{2}+2 h x y+b y^{2}=0$
11. The straight lines are real and distinct if $h^{2}>a b$
12. The straight lines are coincident if $h^{2}=a b \|$
13. The straight lines are imaginary if $h^{2}<a b$
14. If $m_{1} m_{2}$ are slopes of the pair of straight $\|$ lines then $m_{1}+m_{2}=-\frac{2 h}{b}$ and $m_{1} m_{2}=\frac{a}{b} \|$

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

(iii) the slopes of the escalator at the turning points. Slope of the escalator at the turning points

Let $\triangle \mathrm{AOE}=\theta$
In $\triangle \mathrm{OAE}, \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}=\frac{\mathrm{AE}}{\mathrm{DE}}=\frac{180}{800}=\frac{9}{40}$
\therefore Slope at the point $\mathrm{A}=\frac{9}{40}$
Since $\triangle \mathrm{OAE} \equiv \triangle \mathrm{ABB}^{\prime} \equiv \triangle \mathrm{BCC}^{\prime} \equiv \Delta \mathrm{CDD}^{\prime}$
Slope at the points B, C will be $\frac{9}{40}$

EXERCISE 6.3

1. Show that the lines are $3 x+2 y+9=0$ and $12 x+8 y-15=0$ are parallel lines.
Solution: If the equation of two lines are in general form as $a_{1} x+b_{1} y+c=0$ and $a_{2} x+b_{2} y+$ $c_{2}=0$

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \text { or } a_{1} b_{2}=a_{2} b_{1}
$$

Given lines are $3 x+2 y+9=0$ and $12 x+8 y-15=0$

$$
\frac{3}{12}=\frac{2}{8} \Rightarrow \frac{1}{4}=\frac{1}{4}
$$

Hence the given lines are parallel.
2. Find the equation of the straight line parallel to $5 x-4 y+3=0$ and having x-intercept 3 .
Solution : Since x - intercept is 3 , A $(3,0)$ will be a point on the required line.
Any line parallel to $5 x-4 y+3=0$ will be of the form $5 x-4 y+k=0$
Substituting the point $(3,0)$ we get
$+15-0+k=0$
$\Rightarrow k=-15$
\therefore Required equation of the line is $5 x-4 y-15=0$
3. Find the distance between the line $4 x+3 y+4=0$ and a point (i) $(-2,4)$ (ii) $(7,-3)$
Solution: (i) $(-2,4)$
Distance from the point $\left(x_{1}, y_{1}\right)$ to the line

$$
a x+b y+c=0 \text { is } \pm \frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}
$$

Distance from the point $(-2,4)$ to the line

$$
\begin{aligned}
& 4 x+3 y+4=0 \text { is }\left|\frac{4(-2)+3(4)+4}{\sqrt{4^{2}+3^{2}}}\right| \\
& =\frac{(-8+12+4)}{\sqrt{25}}=\frac{8}{5} \text { unit }
\end{aligned}
$$

(ii) $(7,-3)$

Distance from the point $(7,-3)$ to the line $4 x+3 y+4=0$ is
$\pm \frac{4(7)+3(-3)+4}{\sqrt{4^{2}+3^{2}}}= \pm \frac{(28-9+4)}{\sqrt{25}}= \pm\left(\frac{23}{5}\right)=\frac{23}{5}$ units.
4. Write the equation of the lines through the point (1,-1)
(i) parallel to $x+3 y-4=0$
[June - 2019]
(ii) perpendicular to $3 x+4 y=6$

Solution: (i) Any line parallel to $x+3 y-4=0$ will be of the form $x+3 y+k=0$.
This line passes through $(1,-1)$

$$
\therefore 1+3(-1)+k=0
$$

$\Rightarrow \quad 1-3+k=0$
$\Rightarrow \quad k-2=0 \quad \Rightarrow k=2$
\therefore The required line is $x+3 y+2=0$
(ii) Any line perpendicular to $3 x+4 y-6=0$ will be of the form $4 x-3 y+k=0$.
This line passes through $(1,-1)$

$$
\therefore \quad 4(1)-3(-1)+k=0
$$

$\Rightarrow \quad 4+3+k=0$
$\Rightarrow \quad k=-7$
\therefore The required line is $4 x-3 y-7=0$.
5. If $(-4,7)$ is one vertex of a rhombus and if the equation of one diagonal is $5 x-y+7=0$, then find the equation of another diagonal.
Solution : Let the vertex B is $(-4,7)$ and the equation of the diagonal AC is $5 x-y+7=0$
In rhombus, the diagonals are perpendicular to each other.

\therefore Equation of the diagonal BD is $x+5 y+k=0$ which is \perp^{r} to AC.
Since BD passes through the point B $(-4,7)$ we get

$$
\begin{array}{rlrl}
& & -4+5(7)+k & =0 \\
\Rightarrow & -4+35+k & =0 \Rightarrow 31+k=0 \\
\Rightarrow & k & =-31
\end{array}
$$

\therefore Equation of the all another diagonal is $x+5 y-31=0$.
6. Find the equation of the lines passing through the point of intersection lines $4 x-y+3=0$ and $5 x+2 y+7=0$
(i) through the point $(-1,2)$ (ii) Parallel to $x-y+5=0$
(iii) Perpendicular to $x-2 y+1=0$.

Solution: The family of equations of straight lines is of the form $\left(a_{1} x+b_{1} y+c_{1}\right)+\lambda$ $\left(a_{2} x+b_{2} y+c_{2}\right)=0$.

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

Volume - II

MATHEMATICS

$11^{\text {th }}$ Standard

Matrices and Determinants

MUST KNOW DEFINITIONS

Matrix	rows and columns put within a square bracket [].
Order of Matrix	If a matrix A has m rows and n columns then the order or size of the matrix A is defined to be $m \times n$.
Column Matrix	: A matrix having only one column is called a column matrix.
Row matrix	: A matrix having only one row is called a row matrix.
Square m	A matrix in which number of rows is equal to the number of columns, is called a square matrix.
D	A square matrix $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ is called a diagonal matrix. If $a_{i j}=0$ whenever $i \neq j$
Scalar matrix	A diagonal matrix whose entries along the principal diagonal are equal is called a scalar matrix.
Uni	A square matrix in which all the diagonal entries are 1 and the rest are all zero is called a unit matrix.
Triangular matrix	A square matrix which is either upper triangular or lower triangular is called a triangular matrix.
Singular and	
Non - Singular M	A square matrix A is said to be singular if $\|\mathrm{A}\|=0$. A square matrix A is said to be non-singular if $\|\mathrm{A}\| \neq 0$.
Properties of Determinants :	
1. The value of the determinant remains unchanged if its rows and columns are interchanged.	
2. If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes.	
3. If any two rows (or columns) of a determinant are identical, then the value of the determinant is zero.	
4. If each element of a row (or column) of a determinant is multiplied by a constant k, then its value gets multiplied by k.	
5. If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants.	
6. The value of the determinant remain same if we apply the operation. $\mathrm{R}_{i} \rightarrow \mathrm{R}_{i}+k \mathrm{R}_{j}$ or $\mathrm{C}_{i} \rightarrow \mathrm{C}_{i}+k \mathrm{C}_{j}$	

Sura's ■ XI Std - Mathematics int V
Volume - II IIIL Chapter 07

Minor of an element

$+\quad$ The concept of determinant can be extended to the case of square matrix or order $n, n \geq 4$. Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}, n \geq 4$.
$+\quad$ If we delete the $i^{\text {th }}$ row and $j^{\text {th }}$ column from the matrix of $\mathrm{A}=\left[a_{i j}\right]_{n \times m}$, we obtain a determinant of order $(n-1)$, which is called the minor of the element $a_{i j}$.

Adjoint

+ Adjoint of a square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is defined as the transpose of the matrix $\left[\mathrm{A}_{i j}\right]_{n \times n}$ where $\mathrm{A}_{i j}$ is the co-factor of the element $a_{i j}$

Solving linear equations by Gaussian Elimination method

+ Gaussian elimination is a method of solving a linear system by bringing the augmented matrix to an upper triangular form.

FORMULAE TO REMEMBER

$+\quad k \mathrm{~A}=\left[a_{i j}\right]_{m \times n}\left[k a_{i j}\right]_{m \times n}$ where k is a scalar.
$+\quad-\mathrm{A}=(-1) \mathrm{A}, \mathrm{A}-\mathrm{B}=\mathrm{A}+(-1) \mathrm{B}$
$+\quad \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$, (Commutative property for addition)
$+\quad(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$, (Associative property for addition)
$+\quad k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$ where A, B are of same order, k is a constant.
$+\quad(k+1) \mathrm{A}=k \mathrm{~A}+l \mathrm{~A}$ where k and l are constants.
$+\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}, \mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC},(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$. (Distributive law)
$+\quad$ If $\mathrm{A}=\left(a_{i j}\right)_{m \times n}$, then $\mathrm{A}^{\mathrm{T}}=\left(a_{j i}\right)_{n \times m}$

+ Elementary operations of a matrix are as follows
(i) $\mathrm{R}_{i} \leftrightarrow \mathrm{R}_{j}$ or $\mathrm{C}_{i} \leftrightarrow \mathrm{C}_{j}$
(ii) $\mathrm{R}_{i} \rightarrow k \mathrm{R}_{i}$ or $\mathrm{C}_{i} \rightarrow k \mathrm{C}_{j}$
(iii) $\mathrm{R}_{i} \rightarrow \mathrm{R}_{i}+k \mathrm{R}_{j}$ or $\mathrm{C}_{i} \rightarrow \mathrm{C}_{i}+k \mathrm{C}_{j}$
+ Evaluation of determinant $\mathrm{A}=\left[a_{11}\right]_{1 \times 1}=|\mathrm{A}|=a_{11}$
$+\quad$ Evaluation of determinant $\mathrm{A}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$
$+\quad$ Evaluation of determinant $\mathrm{A}=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ is $|\mathrm{A}|=a_{1}\left|\begin{array}{ll}b_{2} & c_{3} \\ b_{3} & c_{3}\end{array}\right|-b_{1}\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|+c_{1}\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|$
$+\quad$ If $\mathrm{A}=\left[a_{i j}\right]_{3 \times 3}$, then $|k \cdot \mathrm{~A}|=k^{3}|\mathrm{~A}|$.
$+\quad \mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}|$. I where A is a square matrix of order n.
+ A square matrix A is said to be singular or non-singular according as $|\mathrm{A}|=0$ or $|\mathrm{A}| \neq 0$.
$+\quad$ Transpose of a matrix: $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A},(k \mathrm{~A})^{\mathrm{T}}=k \mathrm{~A}^{\mathrm{T}} .(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}},(\mathrm{AB})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$.
$+\quad$ Co-factor of $a_{i j}$ of $\mathrm{A}_{i j}=(-1)^{i+j} m_{i j}$ where $m_{i j}$ is the minor of $a_{i j}$.
+ $|\mathrm{AB}|=|\mathrm{A}| \cdot|\mathrm{B}|$ where A and B are square matrices of same order.

EXERCISE 7.5

CHOOSE THE CORRECT OR THE

 MOST SUITABLE ANSWER FROM THE GIVEN FOUR ALTERNATIVES.1. If $a_{i j}=\frac{1}{2}(3 i-2 j)$ and $A=\left[a_{i j}\right]_{2 \times 2}$ is
(1) $\left[\begin{array}{rr}\frac{1}{2} & 2 \\ -\frac{1}{2} & 1\end{array}\right]$
(2) $\left[\begin{array}{rr}\frac{1}{2} & -\frac{1}{2} \\ 2 & 1\end{array}\right]$
(3) $\left[\begin{array}{rr}2 & 2 \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
(4) $\left[\begin{array}{rr}-\frac{1}{2} & \frac{1}{2} \\ 1 & 2\end{array}\right]$

Hint : $a_{i j}=\frac{1}{2}(3 i-2 j)$

$$
\begin{aligned}
& a_{11}=\frac{1}{2}(3-2)=\frac{1}{2}, a_{12}=\frac{1}{2}(3-4)=-\frac{1}{2} \\
& a_{21}=\frac{1}{2}(6-2)=2, a_{22}=\frac{1}{2}(6-4)=\frac{\not x}{\not 2}=1 \\
& \therefore \mathrm{~A}=\left[\begin{array}{rr}
\frac{1}{2} & -\frac{1}{2} \\
2 & 1
\end{array}\right] \quad\left[\text { Ans: (2) }\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
2 & 1
\end{array}\right]\right]
\end{aligned}
$$

2. What must be the matrix X, if $2 X+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$?
(1) $\left[\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right]$
(2) $\left[\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right]$
(3) $\left[\begin{array}{rr}2 & 6 \\ 4 & -2\end{array}\right]$
(4) $\left[\begin{array}{ll}2 & -6 \\ 4 & -2\end{array}\right]$

Hint : $2 \mathrm{X}+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$

$$
\begin{aligned}
\Rightarrow \quad 2 X & =\left[\begin{array}{ll}
3 & 8 \\
7 & 2
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
2 & 6 \\
4 & -2
\end{array}\right] \\
X & =\left[\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

[Ans: (1) $\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$]
3. Which one of the following is true about the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5\end{array}\right]$?
(1) a scalar matrix
(2) a diagonal matrix
(3) an upper triangular matrix
(4) a lower triangular matrix
[Ans: (2) a diagonal matrix]
4. If A and B are two matrices such that $A+B$ and $A B$ are both defined, then
(1) A and B are two matrices not necessarily of same order
(2) A and B are square matrices of same order
(3) Number of columns of A is equal to the number of rows of B
(4) $A=B$.

Hint : For addition both A and B must be of same order to get AB , number of columns of A should be equal to number of rows of B.

If A and B ae square matrices of same order both condition are satisfied.
[Ans: (2) A and B are square matrices of same order]
5. If $\mathbf{A}=\left[\begin{array}{rr}\lambda & 1 \\ -1 & -\lambda\end{array}\right]$, then for what value of $\lambda^{2}, A^{2}=0$?
[June - 2019]
(1) 0
(2) ± 1
(3) -1
(4) 1

Hint :

$$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{cc}
\lambda & 1 \\
-1 & -\lambda
\end{array}\right] \\
\mathrm{A}^{2} & =0
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{cc}\lambda & 1 \\ -1 & -\lambda\end{array}\right]\left[\begin{array}{cc}\lambda & 1 \\ -1 & -\lambda\end{array}\right]=\left[\begin{array}{cc}\lambda^{2}-1 & 0 \\ 0 & -1+\lambda^{2}\end{array}\right]=0$
$\Rightarrow \quad \lambda^{2}-1=0$
$\Rightarrow \quad \lambda^{2}=1$

$$
\lambda= \pm 1 \quad[\text { Ans: }(2) \pm 1]
$$

6. If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}$ $=A^{2}+B^{2}$, then the values of \boldsymbol{a} and \boldsymbol{b} are
(1) $a=4, b=1$
(2) $a=1, b=4$
(3) $a=0, b=4$
(4) $a=2, b=4$

Vector Algebra-I

MUST KNOW DEFINITIONS

$\square \quad$ Scalar: A Scalar is a quantity that is determined by its magnitude.
$\square \quad$ Vector: A vector is a quantity that is determined by both its magnitude and its direction and hence it isopposite directions.
4. Co-initial vectors: Vectors having the same initial point.
5. Co-terminus vectors: Vectors having the same terminal point.
6. Collinear or parallel vectors: Vectors having the same line of action or have the lines of action parallel to one another.
7. Co-planar vectors: Vectors parallel to the same plane or they lie in the same plane.
8. Negative vector: Vector which has the same magnitude as that of \vec{a} but opposite direction is called the negative of \vec{a}. reciprocal to that of \vec{a}
10. Free and localised vector:

When the origin of the vector is any point it is called as a free vector, but when it is restricted to a ${ }^{\|}$ certain specific point it is said to be a localised vector.
$\Rightarrow \quad 1=\lambda^{2}\left[1-\cos ^{2} \frac{\pi}{3}\right] \quad[\because|\vec{b}|=|\vec{c}|=1]: 2$
$\Rightarrow \quad 1=\lambda^{2}\left[1-\frac{1}{4}\right] \Rightarrow 1=\lambda^{2}\left(\frac{3}{4}\right)$
$\Rightarrow \quad \lambda^{2}=\frac{4}{3} \Rightarrow \lambda= \pm \frac{2}{\sqrt{3}}$
Substituting $\lambda= \pm \frac{2}{\sqrt{3}}$ in (1) we get,

$$
\vec{a}= \pm \frac{2}{\sqrt{3}}(\vec{b} \times \vec{c})
$$

10. Find the angle between the vectors $2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}$ and $\hat{\boldsymbol{i}}+\mathbf{2} \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$ using vector product.
Solution: Let $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{\rightarrow}=\hat{i}+\underset{\rightarrow}{2} \hat{j}+\hat{k}$
Let θ be the angle between the vectors a and b

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & -1 \\
1 & 2 & 1
\end{array}\right| \\
& =\hat{i}(1+2)-\hat{j}(2+1)+\hat{k}(4-1) \\
& =3 \hat{i}-3 \hat{j}+3 \hat{k}=3(\hat{i}-\hat{j}+\hat{k}) \\
|\vec{a} \times \vec{b}| & =3 \sqrt{1^{2}+1^{2}+(-1)^{2}}=3 \sqrt{3} \\
|\vec{a}| & =\sqrt{2^{2}+1^{2}+(-1)^{2}}=\sqrt{6} \\
|\vec{b}| & =\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6} \\
& =\frac{|\vec{a} \times \vec{b}|}{|\vec{a} \| \vec{b}|}=\frac{3 \sqrt{3}}{\sqrt{6} \sqrt{6}}=\frac{\not b \sqrt{3}}{6}=\frac{\sqrt{3}}{2}=\sin \frac{\pi}{3} \\
\theta & =\frac{\pi}{3}
\end{aligned}
$$

EXERCISE 8.5

CHOOSE THE CORRECT OR THE MOST SUITABLE ANSWER FROM THE GIVEN FOUR ALTERNATIVES.

1. The value of $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{DA}}+\overrightarrow{\mathrm{CD}}$ is
(1) $\overrightarrow{\mathrm{AD}}$
(2) $\overrightarrow{\mathrm{CA}}$
$\xrightarrow{(3)} \overrightarrow{0}$
(4) $-\overrightarrow{A D}$
$\overrightarrow{\mathrm{AB}} \overrightarrow{\mathrm{BC}} \overrightarrow{\mathrm{DA}} \overrightarrow{\mathrm{CD}} \overrightarrow{\mathrm{AB}} \overrightarrow{\mathrm{BC}}$

Hint: $\mathrm{AB}+\mathrm{BC}+\mathrm{DA}+\mathrm{CD}=\mathrm{AB}+\mathrm{BC}+$
$\overrightarrow{\mathrm{CD}}+\overrightarrow{\mathrm{DA}}=\overrightarrow{\mathrm{AA}}=\overrightarrow{0}$
[Ans: (3) $\overrightarrow{\mathbf{0}}$]
2. If $\vec{a}+2 \vec{b}$ and $3 \vec{a}+m \vec{b}$ are parallel, then the value of m is
(1) 3
(2) $\frac{1}{3}$
(3) 6
(4) $\frac{1}{6}$

Hint : $\quad \vec{a}+2 \vec{b}=3(\vec{a}+2 \vec{b})$

$$
\begin{aligned}
& =3 \vec{a}+6 \vec{b}=3 \vec{a}+m \vec{b} \\
m & =6
\end{aligned}
$$

[Ans: (3) 6]
3. The unit vector parallel to the resultant of the vectors $\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{i}}-\mathbf{2} \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{k}}$ is [March - 2019]
(1) $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$
(2) $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
(3) $\frac{2 \hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$
(4) $\frac{2 \hat{i}-\hat{j}}{\sqrt{5}}$

Hint : Resultant vector of $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-2 \hat{j}+\hat{k}$ is $2 \hat{i}-\hat{j}$
Its magnitude is $\sqrt{2^{2}+(-1)^{2}}=\sqrt{4+1}=\sqrt{5}$
\therefore Required unit vector $=\frac{2 \hat{i}-\hat{j}}{\sqrt{5}}\left[\right.$ Ans: (4) $\left.\frac{\mathbf{2} \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}}{\sqrt{5}}\right]$
4. A vector $\overrightarrow{\mathrm{OP}}$ makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between $\overrightarrow{\mathrm{OP}}$ and the \boldsymbol{z}-axis is
(1) 45°
(2) 60°
(3) 90°
(4) 30°

Hint: Given $\alpha=60^{\circ}, \beta=45^{\circ}$

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
& \Rightarrow \quad \cos ^{2} 60+\cos ^{2} 45+\cos ^{2} \gamma=1 \\
& \Rightarrow \quad\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\cos ^{2} \gamma=1 \\
& \Rightarrow \quad \frac{1}{4}+\frac{1}{2}+\cos ^{2} \gamma=1 \Rightarrow \frac{3}{4}+\cos ^{2} \gamma=1 \\
& \cos ^{2} \gamma=1-\frac{3}{4} \\
& =\frac{1}{4}=\left(\frac{1}{2}\right)^{2}=(\cos 60)^{2} \\
& \Rightarrow \quad \cos \gamma=\cos 60 \\
& \left.\therefore \gamma=60^{\circ} \quad \text { [Ans: (2) } 60^{\circ}\right]
\end{aligned}
$$

2. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $|\vec{a}|=3$, $|\overrightarrow{\boldsymbol{b}}|=4$ and $|\overrightarrow{\boldsymbol{c}}|=\sqrt{24}$ and sum of any two vectors is orthogonal to the third vector, then find $|\vec{a}+\vec{b}+\vec{c}|$.
Solution: $\quad \operatorname{Given}(\vec{a}+\vec{b}) \cdot \vec{c}=0$

$$
\begin{array}{rlrl}
\Rightarrow & \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c} & =0 \\
& (\vec{b}+\vec{c}) \cdot \vec{a} & =0 \\
\Rightarrow & \vec{b} \cdot \vec{a}+\vec{c} \cdot \vec{a} & =0 \\
& (\vec{c}+\vec{a}) \cdot \vec{b}=0 \\
\Rightarrow & \vec{c} \cdot \vec{b}+\vec{a} \cdot \vec{b}=0
\end{array}
$$

$$
\text { Adding, } 2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0
$$

$$
\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0
$$

$$
|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+
$$

$$
2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})
$$

$$
=9+16+24+2(0)
$$

$$
=49
$$

$$
\Rightarrow \quad|\vec{a}+\vec{b}+\vec{c}|=7
$$

3. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$ then prove that $|\overrightarrow{\boldsymbol{a}}-\overrightarrow{\boldsymbol{b}}|=\sqrt{3}$.
Solution :

$$
\text { : } \begin{aligned}
& \text { Given }|\vec{a}+\vec{b}|=1 \\
&|\vec{a}+\vec{b}|^{2}=1 \\
&|\vec{a}|^{2}+|\vec{b}|^{2}+2(\vec{a} \cdot \vec{b})=1 \\
& 1+1+2|\vec{a}||\vec{b}| \cos \theta=1 \text { where } \theta \text { is the } \\
& \text { angle between } \vec{a} \text { and } \vec{b} .
\end{aligned}
$$

$$
\begin{aligned}
2+2(1)(1) \cos \theta & =1 \\
2 \cos \theta & =1-2=-1 \\
\cos \theta & =-\frac{1}{2}
\end{aligned}
$$

$$
\text { Consider }|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2
$$

$$
(\vec{a} \cdot \vec{b})=1+1-2|\vec{a}||\vec{b}| \cos \theta
$$

$$
\begin{aligned}
& =2-\not 2(1)(1)\left(-\frac{1}{\not 2 ᄆ}\right) \\
& =2+1=3
\end{aligned}
$$

$$
\therefore|\vec{a}-\vec{b}|=\sqrt{3}
$$

POINTS TO REMEMBER

In this chapter we have acquired the knowledge of the following :

- A scalar is a quantity that is determined by its magnitude.
- A vector is a quantity that is determined by both its magnitude and its direction
- If we have a liberty to choose the origins of the vector at any point then it is said to be a free vector, whereas if it is restricted to a certain specified point then the vector is said to be a localized vector.
- Two or more vectors are said to be coplanar if they lie on the same plane or parallel to the same plane.
- Two vectors are said to be equal if they have equal length and the same direction.
- A vector of magnitude 0 is called the zero vector.
- A vector of magnitude 1 is called a unit vector.

Let a \vec{a} be a vector and m be a scalar. Then the vector $m \vec{a}$ is called the scalar multiple of a vector \vec{a} by the scalar m.
Two vectors \vec{a} and \vec{b} are said to be parallel if $\vec{a}=\lambda \vec{b}$, where λ is a scalar.

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

21. At $x=\frac{3}{2}$ the function $f(x)=\frac{|2 x-3|}{2 x-3}$ is
(1) continuous
(2) discontinuous
(3) differentiable
(4) non-zero

Hint : $f(x)=(1$, if $x) 1(-1)$ if $x<1$
[Ans: (2) discontinuous]
22. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ bedefinedby $f(x)=\left\{\begin{array}{cc}x & x \text { is irrational } \\ 1-x & x \text { is rational }\end{array}\right.$ then f is
[June - 2019]
(1) discontinuous at $x=\frac{1}{2}$
(2) continuous at $x=\frac{1}{2}$
(3) continuous everywhere
(4) discontinuous everywhere
[Ans: (2) continuous at $x=\frac{1}{2}$]
23. The function $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-1}{x^{3}+1} & x \neq-1 \\ \text { for } x=-1 \text {. }\end{array}\right.$ is not defined
$P \quad x=-1$ The value of $f(-1)$ so that the function extended by this value is continuous is
(1) $\frac{2}{3}$
(2) $-\frac{2}{3}$
(3) 1
(4) 0

Hint $: \Rightarrow f(x)=\left\{\begin{array}{cc}\frac{x^{2}-1}{x^{3}+1} & x \neq-1 \\ \mathrm{P} & x=-1\end{array} \Rightarrow f(-1)=\frac{-2}{3}\right.$
[Ans: (2) $-\frac{\mathbf{2}}{\mathbf{3}}$]
24. Let \boldsymbol{f} be a continuous function on $[2,5]$. If \boldsymbol{f} takes only rational values for all x and $f(3)=12$, then $f(4.5)$ is equal to
(1) $\frac{f(3)+f(4.5)}{7.5}$
(2) 12
(3) 17.5
(4) $\frac{f(4.5)-f(3)}{1.5}$

Hint : f is a constant function
[Ans: (2) 12]
25. Let a function f be defined by $f(x)=\frac{x-|x|}{x}$ for $x \neq 0$ and $f(0)=2$. Then f is
(1) continuous nowhere
(2) continuous everywhere
(3) continuous for all x except $x=1$
(4) continuous for all x except at $x=0$

Hint : $f(x)=\left\{\begin{array}{l}0, x>0 \\ 2, x \leq 0\end{array}\right.$
[Ans: (4) continuous for all x except at $x=0$]

GOVERNMENT EXAM QUESTIONS

SECTION - A (1 MARK)

1. Find $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$.
[Hy - 2019]
(1) 2
(2) $1 / 2$
(3) 1
(4) 0

Hint: $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\lim _{2 x \rightarrow 0} \frac{2 \sin 2 x}{2 x}$

$$
=2 \lim _{2 x \rightarrow 0} \frac{\sin 2 x}{2 x}=2 \quad\left[\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1\right]
$$

[Ans: (1) 2]

SECTION - B (2 MARKS)

1. Evaluate : $\lim _{x \rightarrow 0} \frac{e^{5 x}-1}{x}$.
[Hy - 2018]
Solution: $\lim _{5 x \rightarrow 0} \frac{e^{5 x}-1}{5 x} \times 5=5$
2. Define a continuous function on the closed interval $[a, b]$.
[March - 2019]
Solution : A function $f:[a, b] \rightarrow \mathrm{R}$ is said to be continuous on the closed interval $[a, b]$ if it is continuous on the open interval (a, b) and
$\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and $\lim _{x \rightarrow b^{-}} f(x)=f(b)$
3. Consider the function $f(x)=\sqrt{x}, x \geq 0$. Does $\lim _{x \rightarrow 0} f(x)$ exist?
[March - 2019]
Solution: $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$
$\lim _{x \rightarrow 0^{-}} \sqrt{x}$ does not exist
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exists

4. Show that $\lim _{x \rightarrow \infty}\left(\frac{x+2}{x-2}\right)^{x}=e^{4}$.
[Hy - 2019]
Solution: $\lim _{x \rightarrow \infty}\left(\frac{x+2}{x-2}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{x-2+4}{x-2}\right)^{x-2+2}$

$$
=\lim _{x \rightarrow \infty}\left(1+\frac{4}{x-2}\right)^{(x-2)+2}
$$

Let $y=x-2$, as $x \rightarrow \infty, y \rightarrow \infty$ and (Let $y=x-2$, Then as $x \rightarrow \infty, y \rightarrow \infty)$

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{x+2}{x-2}\right)^{x} & =\lim _{y \rightarrow \infty}\left(1+\frac{4}{y}\right)^{y+2} \\
& =\lim _{y \rightarrow \infty}\left(1+\frac{4}{y}\right)^{y} \cdot \lim _{y \rightarrow \infty}\left(1+\frac{4}{y}\right)^{2} \\
& =e^{4} \cdot 1=e^{4}
\end{aligned}
$$

Differential Calculus Differentiability and Methods of Differentiation

10

MUST KNOW DEFINITIONS

28. If $y=\left(\cos ^{-1} x\right)^{2}$ prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-2=0$. Hence find y_{2} when $x=0$
[June - 2019]
Solution: Given $y=\left(\cos ^{-1} x\right)^{2}$
Differentiating with respect to ' x ' we get,
$y^{\prime}=2 \cdot \cos ^{-1} x \cdot \frac{d}{d x}\left(\cos ^{-1} x\right)$
$\Rightarrow \quad y^{\prime}=2 \cdot \cos ^{-1} x \frac{-1}{\sqrt{1-x^{2}}}$
$\Rightarrow \quad y^{\prime} \sqrt{1-x^{2}}=-2 \cos ^{-1} x$
Squaring both sides we get, $\left(y^{\prime}\right)^{2}\left(1-x^{2}\right)=4\left(\cos ^{-1} x\right)^{2}$
Differentiating again with respect to ' x ' we get,
$\left(y^{\prime}\right)^{2}(-2 x)+\left(1-x^{2}\right) 2 y^{\prime} \cdot y^{\prime \prime}=4(2) \cos ^{-1} x \cdot \frac{d}{d x}\left(\cos ^{-1} x\right)$
$\Rightarrow-2 x\left(y^{\prime}\right)^{2}+2\left(1-x^{2}\right) y^{\prime} \cdot y^{\prime \prime}=8 \cos ^{-1} x \cdot \frac{-1}{\sqrt{1-x^{2}}}$
$\Rightarrow-2 x\left(y^{\prime}\right)^{2}+2\left(1-x^{2}\right) y^{\prime} \cdot y^{\prime \prime}=4\left(\frac{-2 \cos ^{-1} x}{\sqrt{1-x^{2}}}\right)$
$\Rightarrow-2 x\left(y^{\prime}\right)^{2}+2\left(1-x^{2}\right) y^{\prime} \cdot y^{\prime \prime}=4 y^{\prime}$
[From (1)]
Dividing throughout by $2 y^{\prime}$ we get, $-x y^{\prime}+\left(1-x^{2}\right) y^{\prime \prime}=2$
$\Rightarrow \quad\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}-2=0$
\Rightarrow i.e., $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-2=0 \quad$ Hence proved.

Exercise 10.5

Choose the correct or the most suitable ANSWER FROM THE GIVEN FOUR ALTERNATIVES.

1. $\frac{d}{d x}\left(\frac{2}{\pi} \sin x^{0}\right)$ is
(1) $\frac{\pi}{180} \cos x^{\circ}$
(2) $\frac{1}{90} \cos x^{\circ}$
(3) $\frac{\pi}{90} \cos x^{\circ}$
(4) $\frac{2}{\pi} \cos x^{\circ}$

Hint : $\frac{d}{d x}\left(\frac{2}{\pi} \sin x\right)=\frac{2}{\pi} \cos x^{\mathrm{o}}=\frac{2}{180} \cos x^{\mathrm{o}}=\frac{1}{90} \cos x^{\mathrm{o}}$
[Ans : (2) $\frac{1}{90} \cos x^{\circ}$]
2. If $y=f\left(x^{2}+2\right)$ and $f^{\prime}(3)=5$, then $\frac{d y}{d x}$ at $x=1$ is
(1) 5
(2) 25
(3) 15
(4) 10

Hint :

$$
\Rightarrow \quad y^{\prime}=f^{\prime}\left(x^{2}+2\right)(2 x)
$$

$$
\begin{align*}
\Rightarrow \quad f^{\prime}\left(x^{2}+2\right) & =\frac{y^{\prime}}{2 x} \tag{1}\\
\text { Given } f^{\prime}(3) & =5 \tag{2}
\end{align*}
$$

\therefore Comparing (1) and (2), $x^{2}+2=3$
$\Rightarrow \quad x^{2}=1 \Rightarrow x= \pm 1$ and $\frac{y^{\prime}}{2 x}=5$
$\Rightarrow \quad y^{\prime}=10 x \Rightarrow y=10(1)=10$
[Ans: (4) 10]
3. If $y=\frac{1}{4} u^{4}$ and $u=\frac{2}{3} x^{3}+5$, then $\frac{d y}{d x}$ is
(1) $\frac{1}{27} x^{2}\left(2 x^{3}+15\right)^{3}$
(2) $\frac{2}{27} x\left(2 x^{3}+5\right)^{3}$
(3) $\frac{2}{27} x^{2}\left(2 x^{3}+15\right)^{3}$
(4) $\frac{2}{27} x\left(2 x^{3}+5\right)^{3}$

Hint : Given $y=\frac{1}{4} u^{4}$ and $u=\frac{2}{3} x^{3}+5$

$$
\begin{align*}
& \Rightarrow \quad \frac{d y}{d u}=\frac{1}{4} \times 4 u^{3}=u^{3} \text { and } \frac{d u}{d x}=\frac{2}{\not b} \times \nexists x^{2}=2 x^{2} \tag{1}\\
& \therefore \frac{d y}{d x}=y^{\prime}=\frac{d y}{d u} \times \frac{d u}{d x}=u^{3} \times 2 x^{2} \\
&=\left(\frac{2}{3} x^{3}+5\right)^{3} 2 x^{2}=\frac{\left(2 x^{3}+15\right)^{3}}{3^{3}} \times 2 x^{2} \\
&=\frac{2}{27} x^{2}\left(2 x^{3}+15\right)^{3} \\
& {\left[\text { Ans : (3) } \frac{2}{27} x^{2}\left(2 x^{3}+15\right)^{3}\right] }
\end{align*}
$$

4. If $f(x)=x^{2}-3 x$, then the points at which $f(x)=f^{\prime}(x)$ are
[June - 2019]
(1) both positive integers
(2) both negative integers
(3) both irrational
(4) one rational and another irrational

Hint: Given $f(x)=x^{2}-3 x$

$$
\begin{aligned}
f^{\prime}(x) & =2 x-3 \\
f(x) & =f^{\prime}(x) \\
\Rightarrow \quad x^{2}-3 x & =2 x-3
\end{aligned}
$$

$$
x^{2}-5 x+3=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{5 \pm \sqrt{25-12}}{2}=\frac{5 \pm \sqrt{13}}{2}
$$

[Ans: (3) both irrational]
5. If $y=\frac{1}{a-z}$, then $\frac{d z}{d y}$ is
(1) $(a-z)^{2}$
(2) $-(z-a)^{2}$
(3) $(z+a)^{2}$
(4) $-(z+a)^{2}$

11

Integral Calculus

MUST KNOW DEFINITIONS

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

$$
\begin{aligned}
& \text { (iii) } \frac{\mathbf{1}}{\sqrt{\boldsymbol{9}+\mathbf{8 x}-\boldsymbol{x}^{2}}} \\
& =\int \frac{\operatorname{Let} \mathrm{I}=\int \frac{d x}{\sqrt{9+8 x-x^{2}}}}{=}=\int \frac{d x}{\sqrt{-\left(x^{2}-8 x+16-16-9\right)}}=\int \frac{d x}{\sqrt{-\left[(x-4)^{2}-25\right]}} \\
& {\left[\begin{array}{l}
{\left[\begin{array}{l}
\text { Adding and subtracting } \\
{\left[\frac{1}{2}(\text { Co-efficient of } x)\right]^{2}}
\end{array}\right.} \\
\left.=\int \frac{d x}{2}(-8)\right]^{2}=(-4)^{2}=16
\end{array}\right]} \\
& \sqrt{25-(x-4)^{2}}=\int \frac{d x}{\sqrt{5^{2}-(x-4)^{2}}}
\end{aligned}
$$

since $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}(x / a)$ we get,

$$
\mathrm{I}=\sin ^{-1}\left(\frac{x-4}{5}\right)+c
$$

Exercise 11.11

1. Integrate the following with respect to x :
(i) $\frac{2 x-3}{x^{2}+4 x-12}$
(ii) $\frac{5 x-2}{2+2 x+x^{2}}$
(iii) $\frac{3 x+1}{2 x^{2}-2 x+3}$

Solution:

(i) $\frac{2 x-3}{x^{2}+4 x-12}$

Let $\mathrm{I}=\int \frac{2 x-3}{x^{2}+4 x-12} d x$
$2 x-3=\mathrm{A} \cdot \frac{d}{d x}\left(x^{2}+4 x-12\right)+\mathrm{B}$
$\Rightarrow \quad 2 x-3=$ A. $(2 x+4)+B$
Equating the co-efficients of x term and constant term we get

$$
\begin{aligned}
2 & =2 \mathrm{~A} \Rightarrow \mathrm{~A}=1 \\
-3 & =4 \mathrm{~A}+\mathrm{B} \Rightarrow-3=4+\mathrm{B} \Rightarrow \mathrm{~B}=-7 \\
\therefore 2 x-3 & =1(2 x+4)-7 \\
\therefore \mathrm{I} & =\int \frac{2 x-3}{x^{2}+4 x-12} d x=\int \frac{(2 x+4)-7}{x^{2}+4 x-12} d x \\
& =\int \frac{(2 x+4) d x}{x^{2}+4 x-12}-7 \int \frac{d x}{x^{2}+4 x-12}
\end{aligned}
$$

$$
\begin{aligned}
& =\log \left|x^{2}+4 x+12\right|-7 \int \frac{d x}{x^{2}+4 x+4-4-12} \\
& =\log \left|x^{2}+4 x-12\right|-7 \int \frac{d x}{(x+2)^{2}-16} \\
& =\log \left|x^{2}+4 x-12\right|-7 \int \frac{d x}{(x+2)^{2}-4^{2}} \\
& =\log \left|x^{2}+4 x-12\right|-7 \times \frac{1}{2 \times 4} \log \left|\frac{x+2-4}{x+2+4}\right|+c \\
& \mathrm{I}=\log \left|x^{2}+4 x-12\right|-\frac{7}{8} \log \left|\frac{x-2}{x+6}\right|+c \\
& \text { (ii) } \quad \frac{\mathbf{5 x}-\mathbf{2}}{\mathbf{2}+\mathbf{2 x}+\boldsymbol{x}^{2}} \\
& \quad \text { Let } \mathrm{I}=\int \frac{(5 x-2) d x}{2+2 x+x^{2}} \\
& \text { Now, } 5 x-2=\mathrm{A} \cdot \frac{d}{d x}\left(x^{2}+2 x+2\right)+\text { B } \\
& \Rightarrow \quad 5 x-2=\mathrm{A}(2 x+2)+\mathrm{B}
\end{aligned}
$$

Equating the co-efficients of x term and constant term we get

$$
\begin{aligned}
5 & =2 \mathrm{~A} \Rightarrow \mathrm{~A}=\frac{5}{2} \\
-2 & =2 \mathrm{~A}+\mathrm{B} \Rightarrow-2=\not 2\left(\frac{5}{\not 2}\right)+\mathrm{B} \\
-2 & =5+\mathrm{B} \Rightarrow \mathrm{~B}=-7 \\
\therefore 5 x-2 & =\frac{5}{2}(2 x+2)-7
\end{aligned}
$$

$\therefore \mathrm{I}=\int \frac{(5 x-2) d x}{x^{2}+2 x+2}=\frac{5}{2} \int \frac{2 x+2}{x^{2}+2 x+2} d x-7 \int \frac{d x}{x^{2}+2 x+2}$
$=\frac{5}{2} \log \left|x^{2}+2 x+2\right|-7 \int \frac{d x}{x^{2}+2 x+1-1+2}$
$=\frac{5}{2} \log \left|x^{2}+2 x+2\right|-7 \int \frac{d x}{(x+1)^{2}+1^{2}}$
$=\frac{5}{2} \log \left|x^{2}+2 x+2\right|-7 \tan ^{-1}\left(\frac{x+1}{1}\right)+\mathrm{C}$
$=\frac{5}{2} \log \left|x^{2}+2 x+2\right|-7 \tan ^{-1}(x+1)+c$
(iii) $\frac{3 x+1}{2 x^{2}-2 x+3}$

Let $\mathrm{I}=\int \frac{(3 x+1) d x}{2 x^{2}-2 x+3}$

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

MUST KNOW DEFINITIONS

Sample Space : A sample space (S) is the set of all possible outcomes of a random experiment.
Sure event : The sample space S is called the Sure event or certain event.
The null set ϕ is called an impossible event.
For every event A , there corresponds another event $\overline{\mathrm{A}}$ is called the Complementary event to A. It is also called the event 'not A'

Mutually exclusive events : (disjoint events) Two events cannot occur simultaneously are mutually exclusive events $\Rightarrow \mathrm{A}_{i} \cap \mathrm{~A}_{j}=\phi$ for $i \neq j$Exhaustive events : Events $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots . \mathrm{A}_{k}$ are exhaustive events if $\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \ldots \cup \mathrm{~A}_{k}=\mathrm{S}$.
Equally likely events : Two events having the same chance of occurrences are called equally likely events.

Odds: Odds relate the chances in favour of an event A to the chances against it.
Independent events : Events are said to be independent if occurrence or non-occurrence of any one of the event does not affect the probability of occurrence or non-occurrence of the other events

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

By Bayes' theorem

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~A}_{2} / \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right)}{\mathrm{P}\left(\mathrm{~A}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{~A}_{3}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{3}\right)} \\
& =\frac{\frac{3}{10} \times 0.5}{\frac{5}{10} \times 0.4+\frac{3}{10} \times 0.5+\frac{2}{10} \times 0.3}=\frac{\frac{1.5}{10}}{\frac{2}{10}+\frac{1.5}{10}+\frac{.6}{10}}=\frac{\frac{1.5}{10}}{\frac{4.1}{10}} \\
& \mathrm{P}\left(\mathrm{~A}_{2} / \mathrm{B}\right) \quad=\frac{1.5}{10} \times \frac{10}{4.1}=\frac{1.5}{4.1}=\frac{15}{41}
\end{aligned}
$$

5. An advertising executive is studying television viewing habits of married men and women during prime time hours. Based on the past viewing records he has determined that during prime time wives are watching television 60% of the time. It has also been determined that when the wife is watching television, 40% of the time the husband is also watching. When the wife is not watching the television, 30% of the time the husband is watching the television. Find the probability that (i) the husband is watching the television during the prime time of television (ii) if the husband is watching the television, the wife is also watching the television.
Solution: Let the events be defined as follows :
A_{1} : Event of wife and watching the television
A_{2} : Wife not watching the television
B : Husband is watching the television.

$$
\begin{aligned}
\text { Given } \mathrm{P}\left(\mathrm{~A}_{1}\right) & =0.60 \\
\mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right) & =0.40 \\
\mathrm{P}\left(\mathrm{~A}_{2}\right) & =1-0.60=0.40 \\
\mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right) & =0.30
\end{aligned}
$$

(i) P (Husband watching the television)

$$
\begin{array}{ll}
\Rightarrow & \mathrm{P}(\mathrm{~B})=\mathrm{P}\left(\mathrm{~A}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{2}\right) \\
\Rightarrow & \mathrm{P}(\mathrm{~B})=(0.40)(0.60)+(0.30)(0.40) \\
\Rightarrow & \mathrm{P}(\mathrm{~B})=0.24+0.12 \\
\Rightarrow & \mathrm{P}(\mathrm{~B})=0.36 \\
\Rightarrow & \mathrm{P}(\mathrm{~B})=\frac{36}{100}=\frac{9}{25}
\end{array}
$$

(ii) P (if the husband is watching, the wife is also watching the television)

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{P}\left(\mathrm{~A}_{1} / \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)}{\mathrm{P}\left(\mathrm{~A}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \mathrm{A}_{1}\right)+\mathrm{P}\left(\overline{\mathrm{~A}}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~B} / \overline{\mathrm{A}}_{2}\right)} \\
& \Rightarrow \quad \mathrm{P}\left(\mathrm{~A}_{1} / \mathrm{B}\right)=\frac{(0.40)(0.60)}{\mathrm{P}(\mathrm{~B})}=\frac{.24}{\frac{9}{25}} \\
& \Rightarrow \quad \mathrm{P}(\mathrm{~A} / \mathrm{B})=\frac{24}{100} \times \frac{25}{9}=\frac{2}{3}
\end{aligned}
$$

EXERCISE 12.5

CHOOSE THE CORRECT OR MOST SUITABLE ANSWER FROM THE GIVEN FOUR ALTERNATIVES.

1. Four persons are selected at random from a group of 3 men, 2 women and 4 children. The probability that exactly two of them are children is
(1) $\frac{3}{4}$
(2) $\frac{10}{23}$
(3) $\frac{1}{2}$
(4) $\frac{10}{21}$

Hint : Number of ways of choosing the 4 people group
$={ }^{9} \mathrm{C}_{4}=126$
Number of ways of choosing the 4 people group with exactly 2 children $={ }^{4} C_{2} \times{ }^{5} C_{2}=60$

$$
\text { Probability }=\frac{60}{126}=\frac{10}{21} \quad\left[\text { Ans : (4) } \frac{10}{21}\right]
$$

2. A number is selected from the set $\{1,2,3, \ldots, 20\}$. The probability that the selected number is divisible by 3 or 4 is
[March - 2019]
(1) $\frac{2}{5}$
(2) $\frac{1}{8}$
(3) $\frac{1}{2}$
(4) $\frac{2}{3}$

Hint: $\quad \mathrm{S}=\{1,2,3, \ldots 20\} \Rightarrow n(\mathrm{~S})=20$
$\mathrm{A}=$ No is divisible by 3
$=\{3,6,9,12,15,18\} \Rightarrow n(\mathrm{~A})=6$
$B=$ No. is divisible by 4

$$
=\{4,8,12,16,20\} \Rightarrow n(\mathrm{~B})=5
$$

$\mathrm{A} \cap \mathrm{B}=\{12\} \Rightarrow n(\mathrm{~A} \cap \mathrm{~B})=1$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{6}{20}+\frac{5}{20}-\frac{1}{20}=\frac{6+5-1}{20}=\frac{10}{20}=\frac{1}{2}$
[Ans : (3) $\frac{1}{2}$]
3. A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are $\frac{3}{4}, \frac{1}{2}, \frac{5}{8}$. The probability that the target is hit by A or B but not by C is
(1) $\frac{21}{64}$
(2) $\frac{7}{32}$
(3) $\frac{9}{64}$
(4) $\frac{7}{8}$

Hint: \quad Given $\mathrm{P}(\mathrm{A})=\frac{3}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}, \mathrm{P}(\mathrm{C})=\frac{5}{8}$
$\therefore \mathrm{P}(\overline{\mathrm{C}})=1-\frac{5}{8}=\frac{3}{8}$
Ph: 9600175757 / 8124201000

This is only for Sample for Full Book order Online and Available at All Leading Bookstores

On 23.02.2019, Model Question Paper is released by the Govt.

th

STD
Time Allowed : 2.30 Hours] GOVT. MODEL QUESTION PAPER (2018-29)

Mathematics

[Maximum Marks : 90

Section - I

Note: (i) All questions are compulsory
[20 $\times 1$ = 20]
(ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.

1. If two sets A and B have 17 elements in common, then the number of elements common to the set $\mathrm{A} \times$ B and $B \times A$ is
(1) 2^{17}
(2) 17^{2}
(3) 34
(4) insufficient data
2. If \mathbb{R} is the set of all real numbers and if $\mathrm{f}: \mathbb{R}-\{3\}$ $\rightarrow \mathbb{R}$ is defined by $f(x)=\frac{3+x}{3-x}$ for $x \in \mathbb{R}-\{3\}$, then the range of f is
(1) \mathbb{R}
(2) $\mathbb{R}-\{1\}$
(3) $\mathbb{R}-\{-1\}$
(4) $\mathbb{R}-\{-3\}$
3. If the sum and product of the roots of the equation $2 x^{2}+(a-3) x+3 a-5=0$ are equal, then the value of a is
(1) 1
(2) 2
(3) 0
(4) 4
4. Which one of the following is not true?
(1) $|\sin x| \leq 1$
(2) $|\sec x|<1$
(3) $|\cos x| \leq 1$
(4) $\operatorname{cosec} x \geq 1$ or $\operatorname{cosec} x \leq-1$
5. $\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\ldots+\cos 179^{\circ}$ is
(1) 0
(2) 1
(3) -1
(4) 89
6. If 10 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, then the total number of points of intersection are
(1) 45
(2) 40
(3) 10 !
(4) 2^{10}
7. The remainder when 2^{2020} is divided by 15 is
(1) 4
(2) 8
(3) 1
(4) 2
8. The harmonic mean of two positive numbers whose arithmetic mean and geometric mean are 16,8 respectively is
(1) 10
(2) 6
(3) 5
(4) 4
9. In the equation of a straight line $a x+b y+c=0$, if a, b, c are in arithmetic progression then the point on the straight line is
(1) $(1,2)$
(2) $(1,-2)$
(3) $(2,-1)$
(4) $(2,1)$
10. If two straight lines $x+(2 k-7) y+3=0$ and $3 k x+$ $9 y-5=0$ are perpendicular to each other then the value of k is
(1) 3
(2) $\frac{1}{3}$
(3) $\frac{2}{3}$
(4) $\frac{3}{2}$
11. If $|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60^{\circ}$ then $|\vec{a} \times \vec{b}|$ is
(1) 15
(2) 35
(3) 45
(4) 25
12. A vector $\overrightarrow{\mathrm{OP}}$ makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between $\overrightarrow{\mathrm{OP}}$ and the z-axis is
(1) 45°
(2) 60°
(3) 90°
(4) 30°
13. A vector perpendicular to both $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+3 \hat{k}$ is,
(1) $2 \hat{i}+\hat{j}-\hat{k}$
(2) $2 \hat{i}-\hat{j}-\hat{k}$
(3) $3 \hat{i}+\hat{j}+2 \hat{k}$
(4) $3 \hat{i}+\hat{j}-2 \hat{k}$
14. $\lim _{x \rightarrow 0} \frac{\sin |x|}{x}$ is
(1) 1
(2) -1
(3) 0
(4) does not exist
15. if $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=\lfloor x-3\rfloor+|x-4|$, $x \in \mathbb{R}$ then $\lim _{x \rightarrow 3^{-}} f(x)$ is equal to
(1) -2
(2) -1
(3) 0
(4) 1

$11^{\text {th }}$ STD

 COMMON QUARTERLY EXAMINATION - 2019 MathematicsTime Allowed : 2.30 Hours]

Instructions :

(a) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(b) Use Blue or Black ink to write and underline and pencil to draw diagrams

PART - I

Note: (i) Answer the all questions.
[20 $\times 1=20$]
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. The range of the function $\frac{1}{1-2 \sin x}$ is
(a) $(-\infty,-1) \cup\left(\frac{1}{3}, \infty\right)$
(b) $\left(-1, \frac{1}{3}\right)$
(c) $\left[-1, \frac{1}{3}\right]$
(d) $(-\infty,-1] \cup\left[\frac{1}{3}, \infty\right)$
2. The function $f:[0,2 \pi] \rightarrow[-1,1]$ defined by $f(x)=\sin x$ is
(a) one-to-one
(b) onto
(c) bijection
(d) cannot be defined
3. The solution set of the following inequality $|x-1| \geq|x-3|$ is
(a) $[0,2]$
(b) $[2, \infty)$
(c) $(0,2)$
(d) $(-\infty, 2)$
4. If 3 is the logarithm of 343 , then the base is
(a) 5
(b) 7
(c) 6
(d) 9
5. In a $\triangle \mathrm{ABC}, \tan \left(\frac{\mathrm{A}}{2}\right)=$
(a) $\sqrt{\frac{(s-b)(s-c)}{b c}}$
(b) $\sqrt{\frac{s(s-a)}{b c}}$
(c) $\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
(d) $\sqrt{s(s-a)(s-b)(s-c)}$
6. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is
(a) 45
(b) 40
(c) 39
(d) 38
7. The $n^{\text {th }}$ term of the sequence $1,2,4,7,11, \ldots$ is
(a) $n^{3}+3 n^{2}+2 n$
(b) $n^{3}-3 n^{2}+3 n$
(c) $\frac{n(n+1)(n+2)}{3}$
(d) $\frac{n^{2}-n+2}{2}$
8. The slopes of the line which makes an angle 45° with the line $3 x-y=-5$ are
(a) $1,-1$
(b) $\frac{1}{2},-2$
(c) $1, \frac{1}{2}$
(d) $2, \frac{-1}{2}$
9. If the pair of straight lines $6 x^{2}+41 x y-7 y^{2}=0$ makes angle α and β with x-axis, then $\tan \alpha \tan \beta=$
(a) $\frac{-6}{7}$
(b) $\frac{6}{7}$
(c) $\frac{-7}{6}$
(d) $\frac{7}{6}$
10. If $n(\mathrm{~A})=5$ and $n(\mathrm{~B})=7$ then the number of subsets of $A \times B$ is
(a) 2^{35}
(b) 2^{49}
(c) 2^{25}
(d) 2^{70}
11. The relation "less than" in the set of natural numbers is
(a) only symmetric
(b) only transitive
(c) only reflexive
(d) Equivalence
12. If $\left(\frac{2}{3}\right)^{x+2}=\left(\frac{3}{2}\right)^{2-2 x}$ then $x=$
(a) 1
(b) 3
(c) 4
(d) 0
13. The value of $\frac{2\left(3^{n+1}\right)+7\left(3^{n-1}\right)}{3^{n+2}-2\left(\frac{1}{3}\right)^{1-n}}$
(a) 1
(b) 3
(c) -1
(d) 0
14. If $\frac{\cos 3 \theta}{2 \cos 2 \theta-1}=\frac{1}{2}$ then the value of θ is
(a) $\theta=n \pi+\frac{\pi}{3}$
(b) $\theta=2 n \pi+\frac{\pi}{3}$
(c) $\theta=2 n \pi \pm \frac{\pi}{6}$
(d) $\theta=n \pi \pm \frac{\pi}{6}$

PUBLIC EXAMINATION MARCH - 2020

Mathematics (with answers)

PART - I

Note : (i) Answer all the questions.
[20 $\times 1=20$]
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. If $x=a t^{2}, y=2 a t$, then $\frac{d y}{d x}=$
(a) $-t$
(b) $\frac{1}{t}$
(c) $-\frac{1}{t}$
(d) 1
2. If \vec{a} and \vec{b} include an angle 120° and their magnitudes are $2, \sqrt{3}$ and, then $\vec{a} \cdot \vec{b}$ is equal to
(a) $\frac{-\sqrt{3}}{2}$
(b) $\sqrt{3}$
(c) $-\sqrt{3}$
(d) 2
3. If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40$ and $|\vec{b}|=46$, then $|\vec{a}|$ is :
(a) 32
(b) 42
(c) 12
(d) 22
4. $\lim _{x \rightarrow \infty} \frac{a^{x}-b^{x}}{x}=$
(a) $\frac{a}{b}$
(b) $\log a b$
(c) $\log \left(\frac{a}{b}\right)$
(d) $\log \left(\frac{b}{a}\right)$
5. If A is a square matrix, then which of the following is not symmetric :
(a) $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$
(b) $\mathrm{A}+\mathrm{A}^{\mathrm{T}}$
(c) AA^{T}
(d) $A^{T} A$
6. If the function $f:[-3,3] \rightarrow \mathrm{S}$ defined by $f(x)=x^{2}$ is onto, then S is :
(a) $[0,9]$
(b) $[-9,9]$
(c) \mathbb{R}
(d) $[-3,3]$
7. If $\mathrm{A}=\{(x, y) ; y=\sin x, x \in \mathbb{R}\}$ and $\mathrm{B}=\{(x, y) ; y=\cos x$, $x \in \mathbb{R}\}$ then $(\mathrm{A} \cap \mathrm{B})$ contains :
(a) cannot be determined
(b) no element
(c) infinitely many elements
(d) only one element
8. $f(x)=|x|+|x-1|$ is :
(a) discontinuous at $x=0,1$
(b) continuous at $x=0$ only
(c) continuous at $x=1$ only
(d) continuous at both $x=0$ and $x=1$
9. If ${ }^{2 n} \mathrm{C}_{3}:{ }^{n} \mathrm{C}_{3}=11: 1$, then n is :
(a) 7
(b) 5
(c) 6
(d) 11
10. $\frac{\cos 6 x+6 \cos 4 x+15 \cos 2 x+10}{\cos 5 x+5 \cos 3 x+10 \cos x}$ is equal to
(a) $2 \cos x$
(b) $\cos 2 x$
(c) $\cos x$
(d) $\cos 3 x$
11. Ten coin are tossed. The probability of getting at least 8 heads is :
(a) $\frac{7}{128}$
(b) $\frac{7}{64}$
(c) $\frac{7}{32}$
(d) $\frac{7}{16}$
12. The image of the point $(2,3)$ in the line $y=-x$ is :
(a) $(3,2)$
(b) $(-3,-2)$
(c) $(-3,2)$
(d) $(-2,-3)$
13. $\int\left(\frac{x-1}{x+1}\right) d x=$
(a) $x+2 \log (x+1)+c$
(b) $\frac{1}{2}\left(\frac{x-1}{x+1}\right)^{2}+c$
(c) $x-2 \log (x+1)+c$
(d) $\frac{(x-1)^{2}}{2} \log (x+1)+c$
14. $\int \frac{d x}{e^{x}-1}=$
(a) $\log \left(e^{x}+1\right)-\log \left(e^{x}\right)+c$
(b) $\log \left(e^{x}\right)-\log \left(e^{x}-1\right)+c$
(c) $\log \left(e^{x}\right)+\log \left(e^{x}-1\right)+c$
(d) $\log \left(e^{x}-1\right)-\log \left(e^{x}\right)+c$
