This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores

SuRg
 CHEMISTRY $11^{\text {th }}$ Standard

VOLUME-I \& 8 II

Based on the Updated New Textbook

Salient Features

- Prepared as per the updated new textbook for the year 2020-21

Exhaustive Additional MCQs, VSA, SA, LA questions with answers are given in each chapter.
All the objective type (1 Mark) questions, are given with 4 options.
(i) Choosing the correct option
(ii) Matching
(iii) Filling the blanks
(iv) Assertion \& Reason
(v) Choosing the correct Statement
(vi) Choosing the Incorrect Statement

Govt. Model Question Paper-2018 [Govt. MQP. 2018], First Mid-Term Test (2018)
[First Mid. 2018], Quarterly Exam - 2018 [QY. 2018], Half Yearly Exam - 2018 [HY. 2018], March - 2019 [Mar. 2019], June - 2019 [June 2019], Quarterly Exam - 2019 [QY-2019], Half Yearly Exam - 2019 [HY. 2019] and Govt. Supply. Exam. September - 2020 [Sep.-2020] are incorporated in the appropriate sections.

Govt. Supply. Exam. September 2020 question paper is given with answers.

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores

2021-22 Edition

All rights reserved © SURA Publications.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digitally, electronically, mechanically, photocopying, recorded or otherwise, without the written permission of the publishers. Strict action will be taken.

ISBN : 978-93-5330-063-0
Code No: SG 266

Authors:	
Mrs. P. Thilagam PGT (Chemistry)	
Chennai	
Published by :	
Mr. Subash Raj, B.E., M.S.	
Head Office:	
1620, 'J' Block, 16th Main Road, Anna Nagar, Chennai - 600040.	
Phones: 044-4862 9977, 044-486 27755.	
Mob : $8124201000 / 8124301000$	
e-mail : orders @surabooks.com	
For More Information - Contact	
Doubts in Our Guides : enquiry@surabooks.com	
For Order : orders@surabooks.com	
Contact : 80562 94222/80562 1522	
Whatsapp : 8124201000/9840926027	
Online Site : www.surabooks.com	
For Free Study Materials Visit http://tnkalvi.in	
Also available for Std. - XI	
Guides :	
\therefore Sura's Tamil	
\% Sura's English	
- Sura's Mathematics (EM/TM)	
\% Sura's Physics (EM/TM)	
\% Sura's Chemistry (EM/TM)	
\% Sura's Biology (EM/ TM)	
$\%$ Sura's Bołany (EM/ TM)	
\therefore Sura's Zoology (EM/ TM)	
\% Sura's Computer Science (EM/TM)	
\% Sura's Commerce (EM/TM)	
\because Sura's Economics (EM/TM)	
\% Sura's Accountancy (EM/TM)	
Also available 1 Mark Q \& A (EM/TM), 2,3 Marks (EM/ TM) and 5 Marks Q \& A (EM/TM) for all Subjects.	

NOTE FROM PUBLISHER

It gives me great pride and pleasure in bringing to you Sura's Chemistry guide Vol. I \& II for $11^{\text {th }}$ Standard. A deep understanding of the text and exercises is rudimentary to have an insight into the subject. The students have to carefully understand the topics and exercises.

Sura's Chemistry $11^{\text {th }}$ Standard Guide encompasses all the requirements of the students to comprehend the text and the evaluation of the textbook.

It will be a teaching companion to teachers and a learning companion to students.

人 Chapter Snapshot, Concept Map, Formulae to Remember, Must know Definitions are given in almost each chapter.
人 Exhaustive Additional MCQs, SA, LA questions with Answers are given in each chapter. Solved numerical problems are given wherever necessary.
A These features will help students practice and learn effectively all the sections of the textbook.
In order to learn effectively, I advise students to learn the subject sectionwise and practice the exercises given.

Though these salient features are available in our Sura's Chemistry Guide $11^{\text {th }}$ Standard, I cannot negate the indispensable role of the teachers in assisting the student to understand the subject thoroughly.

I sincerely believe this guide satisfies the needs of the students and bolsters the teaching methodologies of the teachers.

I pray the almighty to bless the students for consummate success in their examinations.

Subash Raj, B.E., M.S.

- Publisher

Sura Publications
All the Pest

This is Only for Sample

TO ORDER WITH US

SCHOOLS and TEACHERS

We are grateful for your support and patronage to 'SURA PUBLICATIONS' Kindly prepare your order in your School letterhead and send it to us. For Orders contact: 8056294222 / 8056215222

DIRECT DEPOSIT

A/c Name Our A/c No. Bank Name Bank Branch IFSC	: Sura Publications : 36550290536 : STATE BANK OF INDIA : PADI : SBIN0005083	A/c Name $:$ Sura Publications Our A/c No. $: 21000210001240$ Bank Name : Bank Branch : Anna Nagar West IFSC : UCBA0002100
A/c Name	Sura Publications	A/c Name : Sura Publications
Our A/c No.	6502699356	Our A/c No. : 1154135000017684
Bank Name	: INDIAN BANK	Bank Name : KVB BANK
Bank Branch	: ASIAD COLONY	Bank Branch : Anna Nagar
IFSC	: IDIB000A098	IFSC : KVBL0001154

After Deposit, please send challan and order to our address.
email : orders@surabooks.com / Whatsapp : 8124201000.

DEMAND DRAFT / CHEQUE

Please send Demand Draft / cheque in favour of 'SURA PUBLICATIONS' payable at Chennai.
The Demand Draft / cheque should be sent with your order in School letterhead.

STUDENTS

Order via Money Order (M/O) to

SURA PUBLICATIONS

1620, 'J' Block, $16^{\text {th }}$ Main Road, Anna Nagar, Chennai - 600040.

Phones: 044-4862 9977, 044-486 27755.
Mobile : 8056294222 / 8056215222
E-mail : orders@surabooks.com Website : www.surabooks.com

Contents

VOLUME - I

1. Basic Concepts of Chemistry and Chemical Calculations 1-46
2. Quantum Mechanical Model of Atom 47-75
3. Periodic Classification Of Elements 76-103
4. Hydrogen 104-126
5. Alkali and Alkaline Earth Metals, 127-150
6. Gaseous State 151-181
7. Thermodynamics 182-216
VOLUME - II
8. Physical and Chemical Equilibrium 217-246
9. Solutions 247-275
10. Chemical bonding 276-308
11. Fundamentals of Organic Chemistry 309-340
12. Basic concept of organic reactions 341-360
13. Hydrocarbons 361-398
14. Haloalkanes and Haloarenes 399-424
15. Environmental Chemistry 425-442

Contents

1. Basic Concepts of Chemistry and Chemical Calculations 1-46
2. Quantum Mechanical Model of Atom 47-75
3. Periodic Classification Of Elements 76-103
4. Hydrogen 104-126
5. Alkali and Alkaline Earth Metals. 127-150
6. Gaseous State 151-181
7. Thermodynamics 182-216

CHAPTER SNAPSHOT

PART I : IMPORTANCE OF CHEMISTRY- CHEMISTRY, THE CENTRE OF LIFE

Classification of matter

* Physical classification of matter
* Chemical Classification of matter Elements and compounds: chemical classification
* Atom
* Element
* Molecule
* Compound

Atomic mass

* Average atomic mass
* Gram atomic mass

Molecular mass

* Relative atomic mass
* Relative molecular mass

Mole concept

* Avogadro's hypothesis
* Avogadro number
* Mole definition
* Molar mass
* Molar volume of a gaseous substance Equivalent mass
* Equivalent mass of acid

Equivalent mass of the base

* Equivalent mass of a salt
* Equivalent mass of an oxidising agent
* Equivalent mass of a reducing agent

Empirical formula
Molecular formula
Stoichiometric calculations

* Mole - mole relationship
* Mass - mass relationship
* Mass - volume relationship
* Volume - volume relationship

Limiting reagents

PART II : REDOX REACTIONS

Introduction
Electronic concept of oxidation and reduction

Oxidation number
Types of redox reactions

* Combination reactions
* Decomposition reactions
* Displacement reactions
* Disproportionation reactions
* Competitive electron transfer reactions
Balancing of redox reactions
* Oxidation number method
* Ion-electron method for balancing redox reactions

CONCEPT MAP

FORMULAE TO REMEMBER

* Atomic mass $=\frac{\text { Mass of an atom }}{(1 / 12) \times \text { mass of carbon atom }{ }^{12} \mathrm{C}}$
* Molecular Mass $=\mathrm{n} \times$ Vapour Density
* Molar mass $=\frac{\text { Mass }}{\text { Mole }}$
* Molecular Formula $=\mathrm{n} \times$ Empirical Formula
* Mass \% of an element $=\frac{\text { Mass of that element in the compound }}{\text { Molar mass of the compound }} \times 100$
* Equivalent Mass of Acid $=\frac{\text { Molar mass of the Acid }}{\text { Basicity of Acid }}$
* Equivalent Mass of Base $=\frac{\text { Molar mass of the Base }}{\text { Acidity of Base }}$
* Molarity $=\frac{\text { No. of moles of solute }}{\text { Volume of solution in litres }}$
* Molality $=\frac{\text { No. of moles of solute }}{\text { Mass of solvent in } \mathrm{Kg}}$
* Normality $=\frac{\text { No. of gram equivalents of solute }}{\text { Volume of solution in litres }}$
* Mole fraction= In a solution of two components A \& B

Mole fraction of $A=\frac{\text { No. of moles of } A}{\text { Total no. of moles in solution }}=\frac{n A}{n A+n B}$
Mole fraction of $\mathrm{B}=\frac{\mathrm{nB}}{\mathrm{nA}+\mathrm{nB}}$

MUST KNOW DEFINITIONS

	Matter is defined as anything that has mass and occupies space. All matter is composed of atoms.
Mixtures	Mixtures consist of more than one chemical entity present without any chemical interactions.
Pure substances	Pure substances are composed of simple atoms or molecules. They are further classified as elements and compounds.
Element	An element consists of only one type of atom. Element can exist as monatomic or polyatomic units. The polyatomic elements are called molecules.

Compound	Compounds are made up of molecules which contain two or more atoms of different elements.
Relative atomic mass	The relative atomic mass is defined as the ratio of the average atomic mass factor to the unified atomic mass unit.
Relative molecular mass	Relative molecular mass is defined as the ratio of the mass of a molecule to the unified atomic mass unit. The relative molecular mass of any compound can be calculated by adding the relative atomic masses of its constituent atoms.
Mole	One mole is the amount of substance that contains as many elementary particles as the number of atoms in 12 g of carbon-12 isotope.
Avogadro Number	The total number of entities present in one mole of any substance is equal to 6.022×10^{23}. This number is called Avogadro number
Molar Mass	Molar mass is defined as the mass of one mole of a substance. The molar mass of a compound is equal to the sum of the relative atomic masses of its constituents expressed in $\mathrm{g} \mathrm{mol}^{-1}$.
Molar Volume	The volume occupied by one mole of any substance in the gaseous state at a given temperature and pressure is called molar volume.
Gram equivalent mass	Gram equivalent mass of an element, compound or ion is the mass that combines or displaces 1.008 g hydrogen or 8 g oxygen or 35.5 g chlorine.
Empirical formula	Empirical formula of a compound is the formula written with the simplest ratio of the number of different atoms present in one molecule of the compound as subscript to the atomic symbol.
Molecular formula	Molecular formula of a compound is the formula written with the actual number of different atoms present in one molecule as a subscript to the atomic symbol.
Stoichiometry	Stoichiometry is the quantitative relationship between reactants and products in a balanced chemical equation in moles. The quantity of reactants and products can be expressed in moles or in terms of mass unit or as volume.
Limiting reagent	when a reaction is carried out using non-stoichiometric quantities of the reactants, the product yield will be determined by the reactant that is completely consumed. It limits the further reaction from taking place and is called as the limiting reagent.
Oxidation Nu	It is defined as the imaginary charge left on the atom when all other atoms of the compound have been removed in their usual oxidation states that are assigned according to set of rules.
Combination reactions	Redox reactions in which two substances combine to form a single compound are called combination reaction.
Decomposition reaction	Redox reactions in which a compound breaks down into two or more components are called decomposition reactions. These reactions are opposite to combination reactions.
Displacement reactions	Redox reactions in which an ion (or an atom) in a compound is replaced by an ion (or atom) of another element are called displacement reactions.
Disproportionation reaction	In some redox reactions, the same compound can undergo both oxidation and reduction. In such reactions, the oxidation state of one and the same element is both increased and decreased. These reactions are called disproportionation reactions.

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores

```
Oxidation : Classical concept - Addition of oxygen (or) Removal of hydrogen.
    Electronic concept - Loss of electrons (or) Increase in oxidation number.
Reduction : Classical concept - Addition of Hydrogen (or) Removal of oxygen.
    Electronic concept - Gain of electrons (or) Decrease in oxidation number
Redox Reaction : The reaction that involve the oxidation and reduction as its two half reactions
    are called redox reactions.
Oxidising Agent : Classical Concept : In a redox reaction, the substance which oxidises the other
    (or) reduces itself is called oxidising agent.
    Electron Transfer concept : The substance that gains electrons.
Reducing Agent : Classical Concept : In a redox reaction, the substance which reduces the other
    (or) oxidises it self is called reducing agent.
    Electron Transfer concept : The substance that loss or donate electrons.
```


EUALUATION

I. Choose The Best Answer :

1. 40 ml of methane is completely burnt using 80 ml of oxygen at room temperature The volume of gas left after cooling to room temperature is
(a) $40 \mathrm{ml} \mathrm{CO}_{2}$ gas
(b) $40 \mathrm{ml} \mathrm{CO}_{2}$ gas and $80 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ gas
(c) $60 \mathrm{ml} \mathrm{CO}_{2}$ gas and $60 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ gas
(d) $120 \mathrm{ml} \mathrm{CO}_{2}$ gas [Ans. (a) 40 ml CO 2 gas]

Hint: $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
2. An element X has the following isotopic composition ${ }^{200} \mathrm{X}=90 \%,{ }^{199} \mathrm{X}=8 \%$ and ${ }^{202} \mathrm{X}=2 \%$. The weighted average atomic mass of the element X is closest to
(a) 201 u
(b) 202 u
(c) 199 u
(d) 200 u
[Ans. (d) 200 u]

$$
\text { Hint: } \begin{aligned}
= & \frac{(200 \times 90)+(199 \times 8)+(202 \times 2)}{100} \\
& =199.96=200 \mathrm{u}
\end{aligned}
$$

3. Assertion : Two mole of glucose contains 12.044×10^{23} molecules of glucose
Reason : Total number of entities present in one mole of any substance is equal to 6.02×10^{22}
[FIRST MID-2018]
(a) both assertion and reason are true and the reason is the correct explanation of assertion
(b) both assertion and reason are true but reason is not the correct explanation of assertion
(c) assertion is true but reason is false
(d) both assertion and reason are false
[Ans. (c) assertion is true but reason is false]
Hint: Based on Avogadro's law. One mole of any substance is equal to 6.022×10^{23}.
4. Carbon forms two oxides, namely carbon monoxide and carbon dioxide. The equivalent mass of which element remains constant?
(a) Carbon
(b) oxygen
(c) both carbon and oxygen
(d) neither carbon nor oxygen [Ans. (b) oxygen]

Hint: React 1:2C $+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}$
$2 \times 12 \mathrm{~g}$ carbon combines with 32 g of oxygen
\therefore Equivalent mass of carbon $=\frac{2 \times 12}{32} \times 8=6$
React $2: \mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
12 g carbon combines with 32 g of oxygen
\therefore Equivalent mass of carbon $\frac{12}{32} \times 8=3$

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
5. The equivalent mass of a trivalent metal element is $\mathbf{9} \mathbf{g ~ e q}^{-1}$ the molar mass of its anhydrous oxide is
(a) 102 g
(b) 27 g
(c) 270 g
(d) 78 g
[Ans. (a) 102 g$]$
Hint: Atomic mass of the metal oxide is equal to 2 multiple atomic mass of metal +3 multiple atomic mass of oxygen
6. The number of water molecules in a drop of water weighing 0.018 g is
[FIRST MID-2018]
(a) 6.022×10^{26}
(b) 6.022×10^{23}
(c) 6.022×10^{20}
(d) 9.9×10^{22}
[Ans. (c) 6.022×10^{20}]
Hint: $0.001 \times 6.023 \times 10^{23}$
7. 1 g of an impure sample of magnesium carbonate (containing no thermally decomposable impurities) on complete thermal decomposition gave 0.44 g of carbon dioxide gas. The percentage of impurity in the sample is
(a) 0%
(b) 4.4%
(c) 16%
(d) 8.4%
[Ans. (c) 16\%]
Hint: impurity is equal to $1 \times 100 / 1.84$.
8. When 6.3 g of sodium bicarbonate is added to 30 g of acetic acid solution, the residual solution is found to weigh 33 g . The number of moles of carbon dioxide is released in the reaction is
(a) 3
(b) 0.75
(c) 0.075
(d) 0.3
[Ans. (c) 0.075]
Hint: Number of moles of CO_{2} is equal to given weight/ molecular weight.
9. When 22.4 litres of $\mathbf{H}_{2}(\mathrm{~g})$ is mixed with 11.2 litres of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at 273 K at 1 atm the moles of HCl (g), formed is equal to
(a) 2 moles of HCl (g)
(b) 0.5 moles of $\mathrm{HCl}(\mathrm{g})$
(c) 1.5 moles of $\mathrm{HCl}(\mathrm{g})$
(d) 1 moles of HCl (g)
[Ans. (d) 1 moles of HCl (g)]
Hint: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}$
1 mole of an ideal gas occupies at 22.4 l .
10. Hot concentrated sulphuric acid is a moderately strong oxidising agent. Which of the following reactions does not show oxidising behaviour?
(a) $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
(d) none of the above
[Ans. (c) $\left.\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}\right]$
11. Choose the disproportionation reaction among the following redox reactions.
(a) $3 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{N}_{2(\mathrm{~g})} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2(\mathrm{~s})}$
(b) $\mathrm{P}_{4(\mathrm{~s})}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3(\mathrm{~g})}+$
$3 \mathrm{NaH}_{2} \mathrm{PO}_{2(\mathrm{aq})}$
(c) $\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{KI}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{KCl}_{(\mathrm{aq})}+\mathrm{I}_{2}$
(d) $\mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Al}_{(\mathrm{s})} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Cr}(\mathrm{s})$
[Ans. (b) $\mathbf{P}_{4(s)}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow$ $\left.\mathrm{PH}_{3(\mathrm{~g})}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2(\mathrm{qq)}}\right]$
12. The equivalent mass of potassium permanganate in alkaline medium is
$\mathbf{M n O}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{\mathbf{2}}+\mathbf{4 \mathrm { OH } ^ { - }}$
(a) 31.6
(b) 52.7
(c) 79
(d) None of these
[Ans. (b) 52.7]
Hint: The reduction reaction of the oxidising agent $\left(\mathrm{MnO}_{4}^{-}\right)$involves gain of 3 electrons.
Hence the equivalent mass =

$$
\frac{\text { Molar mass of } \mathrm{KMnO}_{4}}{3}=\frac{158.1}{3}=52.7 .
$$

13. Which one of the following represents 180 g of water?
[QY. 2019]
(a) 5 Moles of water
(b) 90 moles of water
(c) $\frac{6.022 \times 10^{23}}{180}$ molecules of water
(d) 6.022×10^{24} molecules of water
[Ans. (d) 6.022×10^{24} molecules of water]
Hint: $10 \times 6.023 \times 10^{23}$
14. 7.5 g of a gas occupies a volume of 5.6 litres at $0^{\circ} \mathrm{C}$ and 1 atm pressure. The gas is
[HY. 2018]
(a) NO
(b) $\mathrm{N}_{2} \mathrm{O}$
(c) CO
(d) CO_{2}
[Ans. (a) NO]
Hint: $\frac{7.5 \mathrm{~g}}{5.6 \mathrm{l}} \times 22.41=30 \mathrm{~g}$
Molar mass of NO $(14+16)=30 \mathrm{~g}$.

This is Only for Sample
15. Total number of electrons present in 1.7 g of ammonia is
[FIRST MID-2018]
(a) 6.022×10^{23}
(b) $\frac{6.022 \times 10^{22}}{1.7}$
(c) $\frac{6.022 \times 10^{24}}{1.7}$
(d) $\frac{6.022 \times 10^{23}}{1.7}$
[Ans. (a) 6.022×10^{23}]
Hint: Number of moles is equal to Atomic weight / valency
16. The correct increasing order of the oxidation state of sulphur in the anions
$\mathrm{SO}_{4}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}, \mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ is
(a) $\mathrm{SO}_{3}^{2-}<\mathrm{SO}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
(b) $\mathrm{SO}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$
(c) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{4}^{2-}$
(d) $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$
[Ans. (c) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{4}^{2-}$]
Hint: $\stackrel{+3}{\mathrm{~S}_{2}} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{+4}<\stackrel{+5}{\mathrm{~S}_{2}} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{4}^{+6}$
17. The equivalent mass of ferrous oxalate is
(a) $\frac{\text { molar mass of ferrous oxalate }}{1}$
(b) $\frac{\text { molar mass of ferrous oxalate }}{2}$
(c) $\frac{\text { molar mass of ferrous oxalate }}{3}$
(d) none of these
[Ans. (c)]

$$
\text { Hint: } \begin{aligned}
\begin{array}{l}
2+ \\
\mathrm{FeC} \\
2
\end{array} \\
\\
\mathrm{n}=1+2(1)=3
\end{aligned}
$$

18. If Avogadro number were changed from 6.022×10^{23} to 6.022×10^{20}, this would change
(a) the ratio of chemical species to each other in a balanced equation
(b) the ratio of elements to each other in a compound
(c) the definition of mass in units of grams
(d) the mass of one mole of carbon
[Ans. (d) the mass of one mole of carbon]
19. Two 22.4 litre containers A and B contains 8 g of O_{2} and 8 g of SO_{2} respectively at 273 K and 1 atm pressure, then
(a) Number of molecules in A and B are same
(b) Number of molecules in B is more than that in A.
(c) The ratio between the number of molecules in A to number of molecules in B is 2:1
(d) Number of molecules in B is three times greater than the number of molecules in A .
[Ans. (c) The ratio between the number of molecules in A to number of molecules in B is 2:1]
20. What is the mass of precipitate formed when 50 ml of 8.5% solution of AgNO_{3} is mixed with 100 ml of 1.865% potassium chloride solution?
(a) 3.59 g
(b) 7 g
(c) 14 g
(d) 28 g
[Ans. (a) 3.59 g$]$
Hint: Mass of AgNO_{3} is equal to number of moles multiple molar mass.
21. The mass of a gas that occupies a volume of 612.5 ml at room temperature and pressure (25° c and 1 atm pressure) is 1.1 g . The molar mass of the gas is
(a) $66.25 \mathrm{~g} \mathrm{~mol}^{-1}$
(b) $44 \mathrm{~g} \mathrm{~mol}^{-1}$
(c) $24.5 \mathrm{~g} \mathrm{~mol}^{-1}$
(d) $662.5 \mathrm{~g} \mathrm{~mol}^{-1}$
[Ans. (b) $44 \mathrm{~g} \mathrm{~mol}^{-1}$]

$$
\begin{aligned}
& \text { Hint: } \quad=\frac{612.5 \cdot 10^{3} \mathrm{I}}{24.5 \mathrm{~L} \mathrm{~mol}^{1}}=0.025 \text { moles } \\
& \text { M olar mass }=\frac{\text { mass }}{\text { No. of. moles }} \\
& =\frac{1.1 \mathrm{~g}}{0.025 \mathrm{~mol}}=44 \mathrm{~g} \mathrm{~mol}^{1} \text {. }
\end{aligned}
$$

22. Which of the following contain same number of carbon atoms as in $\mathbf{6 g}$ of carbon-12.
(a) 7.5 g ethane
(b) 8 g methane
(c) both (a) and (b)
(d) none of these
[Ans. (c) both (a) and (b)]
23. Which of the following compound(s) has /have percentage of carbon same as that in ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$
[QY. 2019]
(a) propene
(b) ethyne
(c) benzene
(d) ethane
[Ans. (a) propene]
24. Which of the following is/are true with respect to carbon -12.
(a) relative atomic mass is 12 u
(b) oxidation number of carbon is +4 in all its compounds.
(c) 1 mole of carbon- 12 contain 6.022×10^{22} carbon atoms.
(d) all of these
[Ans. (a) relative atomic mass is $\mathbf{1 2} \mathbf{u}$]
25. Which one of the following is used as a standard for atomic mass.
[Govt. MQP-2018]
(a) ${ }_{6} \mathrm{C}^{12}$
(b) ${ }_{7} \mathrm{C}^{12}$
(c) ${ }_{6} \mathrm{C}^{13}$
(d) ${ }_{6} \mathrm{C}^{14}$
[Ans. (a) ${ }_{6} \mathrm{C}^{12}$]

II. Write Brief Answer To The Following Questions.

26. Define relative atomic mass.
[FIRST MID-2018]
Ans. The relative atomic mass of element is defined as the ratio of mass of one atom of the element to the mass of $1 / 12^{\text {th }}$ mass of one atom of carbon-12
Relative atomic mass (A_{r})
$=\frac{\text { Mass of one atom of the element }}{\text { Mass of } 1 / 12^{\text {th }} \text { mass of one atom of Carbon-12 }}$
$=\frac{\text { Mass of one atom of an element }}{1.6605 \times 10^{-27} \mathrm{Kg}}$
27. What do you understand by the term mole.
[June 2019]
The mole is defined as the amount of a substance which contains 6.023×10^{23} particles such as atoms, molecules or ions. It is denoted by the symbol " n ".
28. Define equivalent mass.
[Govt. MQP-2018; QY. 2018 \& 19]
Ans. The equivalent mass of an element, compound or ion is the number of parts of mass of an element which combines with or displaces 1.008 parts of hydrogen or 8 parts of oxygen or 35.5 parts of chlorine.
29. What do you understand by the term oxidation number.
Ans. Oxidation number refers to the number of charges an atom would have in a molecule or an ionic compound, if electrons were transferred completely the oxidation numbers reflect the number of electron transferred.
30. Distinguish between oxidation and reduction.
[HY. 2019]
Ans.

	Oxidation	Reduction
(i)	Addition of oxygen and removal of hydrogen	Additional of hydrogen and removal of oxygen
(ii)	This process involves loss of electrons $\mathrm{Fe}^{2+} \xrightarrow{2+}+\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	This process involves gain electrons. $\mathrm{Cu}^{2+}+2^{2-} \longrightarrow$
(iii)	Oxidation number increases	Oxidation number decreases
(iv)	$\mathrm{Ca}+\mathrm{S} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}$
(v)	Removal of Metal $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{2 \mathrm{KOH}+\mathrm{I}_{2}}$	$\mathrm{Addition} \mathrm{of} \mathrm{metal}_{\mathrm{HgCl}_{2}+\mathrm{Hg} \xrightarrow{\mathrm{Hg}_{2} \mathrm{Cl}_{2}}}$

31. Calculate the molar mass of the following compounds.
i) Urea $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right]$
ii) Acetone $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$
iii) Boric acid $\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]$
iv) Sulphuric acid $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$

Ans. (i) urea $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right]$:

$$
\begin{aligned}
& \mathrm{C}: 1 \times 12.01=12.01 \\
& \mathrm{O}: 1 \times 16=16.00 \\
& \mathrm{~N}: 2 \times 14.01=28.02 \\
& \mathrm{H}: 4 \times 1.01=\underline{4.04} \\
& \underline{60.07} \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(ii) acetone $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$

C : $3 \times 12.01=36.03$
$\mathrm{H}: 6 \times 1.01=6.06$
$\mathrm{O}: 1 \times 16=16.00$

$$
\overline{58.09} \mathrm{~g} \mathrm{~mol}^{-1}
$$

(iii) boric acid $\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]$:

$$
\begin{aligned}
& \text { H : } 3 \times 1.01=3.03 \\
& \text { В }: 1 \times 10=10.00 \\
& \text { О }: 3 \times 16=\underline{48.00} \\
& \underline{\underline{61.03}} \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(iv) sulphuric acid $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$:

$$
\begin{aligned}
& \mathrm{H}: 2 \times 1.01=2.02 \\
& \mathrm{~S}: 1 \times 32.06=32.06 \\
& \mathrm{O}: 4 \times 16=\underline{\underline{64.00}} \\
& \underline{\underline{98.08}} \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
32. The density of carbon dioxide is equal to $1.965 \mathrm{kgm}^{-3}$ at 273 K and 1 atm pressure. Calculate the molar mass of CO_{2}.
Ans. Given :
The density of CO_{2} at 273 K and 1 atm pressure $=1.965 \mathrm{kgm}^{-3}$
Molar mass of $\mathrm{CO}_{2}=$?
At 273 K and 1 atm pressure, 1 mole of CO_{2} occupies a volume of 22.4 L
Mass of 1 mole of CO_{2}

$$
\begin{aligned}
& =\frac{1.965 \mathrm{Kg}}{1 \mathrm{~m}^{3}} \times 22.4 \mathrm{~L} \\
& =\frac{1.965 \times 10^{3} \mathrm{~g} \times 22.4 \times 10^{-3} \mathrm{~m}^{2}}{1 \mathrm{nh}^{6}} \\
& =44.01 \mathrm{~g}
\end{aligned}
$$

Molar mass of $\mathrm{CO}_{2}=44 \mathrm{gmol}^{-1}$.
33. Which contains the greatest number of moles of oxygen atoms
i) $\mathbf{1 ~ m o l}$ of ethanol
ii) $\mathbf{1} \mathbf{~ m o l}$ of formic acid
iii) $\mathbf{1 ~ m o l}$ of $\mathrm{H}_{2} \mathrm{O}$

Ans. (i) 1 mol of ethanol : $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol) -
Molar mass $=24+6+16=46$
46 g of ethanol contains $1 \times 6.023 \times 10^{23}$ number of oxygen atoms.
(ii) $\mathbf{1} \mathbf{~ m o l}$ of formic acid : HCOOH (Formic acid) - Molar mass $=2+12+32=46$ 46 g of HCOOH contains $2 \times 6.023 \times 10^{23}$ number of oxygen atoms
(iii) $\mathbf{1} \mathbf{~ m o l}$ of $\mathrm{H}_{2} \mathrm{O}: \mathrm{H}_{2} \mathrm{O}$ (Water) - Molar mass $=2+16=18$
18 g of water contains $1 \times 6.023 \times 10^{23}$ number of oxygen atoms.
\therefore mol of formic acid contains the greatest number of oxygen atoms.
34. Calculate the average atomic mass of naturally occurring magnesium using the following data

Isotope	Isotopic atomic mass	Abundance (\%)
Mg^{24}	23.99	78.99
Mg^{25}	24.99	10.00
Mg^{26}	25.98	11.01

Ans. Isotopes of Mg

$$
\begin{aligned}
& \text { Atomic mass }=\mathrm{Mg}^{24}=23.99 \times \frac{78.99}{100}=18.95 \\
& \text { Atomic mass }=\mathrm{Mg}^{25}=24.99 \times \frac{10}{100}=2.499 \\
& \text { Atomic mass }=\mathrm{Mg}^{26}=25.98 \times \frac{11.01}{100}=2.860
\end{aligned}
$$

Average atomic mass $=24.309$
Average atomic mass of $\mathrm{Mg}=24.309$.
35. In a reaction $x+y+z_{2}$ xyz_{2} identify the Limiting reagent if any, in the following reaction mixtures.
(a) 200 atoms of $x+200$ atoms of $y+50$ molecules of z_{2}
(b) $1 \mathbf{~ m o l}$ of $x+1 \mathbf{~ m o l}$ of $y+3 \mathbf{~ m o l}$ of z_{2}
(c) 50 atoms of $x+25$ atoms of $y+50$ molecules of z_{2}
(d) 2.5 mol of $\mathrm{x}+5 \mathrm{~mol}$ of $\mathrm{y}+5 \mathrm{~mol}$ of z_{2}

Ans. Reaction: $\mathrm{x}+\mathrm{y}+\mathrm{z}_{2} \longrightarrow \mathrm{xyz}_{2}$

Question	Number of moles of reactants allowed to react			Number of moles of reactants consumed		Limiting during reaction	
	\mathbf{x}	\mathbf{y}	\mathbf{z}_{2}	\mathbf{x}	\mathbf{y}		
(a)	200 atoms	200 atoms	50 molecules	50 atoms	50 atoms	50 molecules	z_{2}
(b)	1 mol	1 mol	3 mol	1 mol	1 mol	1 mol	x and y
(c)	50 atom	25 atom	50 molecules	25 atom	25 atom	25 molecules	y
(d)	2.5 mol	5 mol	5 mol	2.5 mol	2.5 mol	2.5 mol	x

This is Only for Sample
for Full Book Order Online and Available at All Leading Bookstores
36. Mass of one atom of an element is $6.645 \times 10^{-23} \mathrm{~g}$. How many moles of element are there in 0.320 kg .
Ans. Given :
mass of one atom $=6.645 \times 10^{-23} \mathrm{~g}$
\therefore mass of 1 mole of atom

$$
\begin{aligned}
& =6.645 \times 10^{-23} \mathrm{~g} \times 6.022 \times 10^{23} \\
& =40 \mathrm{~g}
\end{aligned}
$$

\therefore number of moles of element in 0.320 kg

$$
\begin{aligned}
& =\frac{1 \mathrm{~mole}}{40 \mathrm{~g}} \times 0.320 \mathrm{~kg} \\
& =\frac{1 \mathrm{~mol} \times 320 \mathrm{~g}}{40 \mathrm{~g}} \\
& =8 \mathrm{~mol}
\end{aligned}
$$

37. What is the difference between molecular mass and molar mass? Calculate the molecular mass and molar mass for carbon monoxide.
Ans.

	Molecular mass	Molar mass
(i)	Molecular mass is defined as the ratio of the mass of a molecule to the unified this is relative molecular mass atomic mass unit.	Molar mass is defined as the mass of one mole of a substance.
(ii)	The relative molecular mass of any compound is calculated by adding the relative atomic masses of its constituent atoms	The molar mass of a compound is equal to the sum of the relative atomic masses of its constituents.
(iii)	Its unit is u or amu	Its unit is $\mathrm{g} \mathrm{mol}^{-1}$
(iv)	$\begin{aligned} & \text { Molecular mass of CO: } \\ & (1 \times \text { at.mass of C) }+ \\ & (1 \times \text { at.mass of O) } \\ & 1 \times 12.01 \mathrm{amu} \\ & +1 \times 16 \mathrm{amu} \\ & =28.01 \mathrm{amu} \end{aligned}$	Molar mass of CO : $1 \times 12.01+1 \times 16$ $=28.01 \mathrm{~g} \mathrm{~mol}^{-1}$

38. What is the empirical formula of the following ?
i) Fructose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ found in honey
ii) Caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ a substance found in tea and coffee.
[FIRST MID-2018; QY-2018]
Ans.

Compound	Molecular formula	Empirical formula
Fructose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$
Caffeine	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$

39. The reaction between aluminium and ferric oxide can generate temperatures up to 3273 K and is used in welding metals. (Atomic mass of $\mathbf{A l}=27 \mathbf{u}$ Atomic mass of $\mathbf{O}=\mathbf{1 6} \mathbf{u}$)
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$; If, in this process, 324 g of aluminium is allowed to react with 1.12 kg of ferric oxide.
i) Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed.
ii) How much of the excess reagent is left at the end of the reaction?
[Gov. MQP-2018]
Ans. i) $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$ $54 \mathrm{~g} \quad 160 \mathrm{~g} \quad 102 \mathrm{~g} \quad 112 \mathrm{~g}$
As per balanced equation 54 g Al is required for 112 g of Iron and 102 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
$\therefore 324 \mathrm{~g}$ of Al will give $\frac{102}{54} \times 324=612 \mathrm{~g}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$
ii) 54 g of Al required 160 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ for welding reaction
$\therefore 324 \mathrm{~g}$ of Al will require $\frac{160}{54} \times 324=960 \mathrm{~g}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
\therefore Excess $\mathrm{Fe}_{2} \mathrm{O}_{3}$ - unreacted $\mathrm{Fe}_{2} \mathrm{O}_{3}=1120$ $960=160 \mathrm{~g}$.
40. How many moles of ethane is required to produce 44 g of $\mathrm{CO}_{2(\mathrm{~g})}$ after combustion.
[FIRST MID-2018; QY. 19]
Ans. Balanced equation for the combustion of ethane

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
\Rightarrow \quad & 2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

To produce 4 moles of $\mathrm{CO}_{2}, 2$ moles of ethane is required
\therefore To produce 1 mole $(44 \mathrm{~g})$ of CO_{2} required number of moles of ethane

$$
\begin{aligned}
& =\frac{2 \text { mol ethane }}{4 \mathrm{molCO}_{2}} \times 1 \mathrm{~mol} \mathrm{CO}_{2} \\
& =\frac{1}{2} \text { mole of ethane } \\
& =0.5 \text { mole of ethane. }
\end{aligned}
$$

This is Only for Sample
for Full Book Order Online and Available at All Leading Bookstores
41. Hydrogen peroxide is an oxidising agent. It oxidises ferrous ion to ferric ion and reduced itself to water. Write a balanced equation.
Ans.

$$
\begin{aligned}
& \underset{\uparrow}{\mathrm{T}_{2}} \stackrel{-1}{\mathrm{O}_{2}}+\underset{\left(1 \mathrm{e}^{-} \times 2\right)}{\mathrm{Fe}^{2+}} \mathrm{Fe}^{3+}+\mathrm{H}_{2}^{-2} \mathrm{H}^{-2} \\
& 1 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{Fe}^{2}+\rightarrow \mathrm{Fe}^{3}+\mathrm{H}_{2} \mathrm{O} \\
& \Rightarrow \quad \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{Fe}^{2}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Fe}^{3}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

42. Calculate the empirical and molecular formula of a compound containing 76.6% carbon, 6.38% hydrogen and rest oxygen its vapour density is 47 .
[Mar. 2019; Sep.-2020]
Ans.

Element	Percentage	Atomic mass	Relative number of atoms	Simple ratio	Whole no
C	76.6	12	$\frac{76.6}{12}=6.38$	$\frac{6.38}{1.06}=6$	6
H	6.38	1	$\frac{6.38}{1}=6.38$	$\frac{6.38}{1.06}=6$	6
O	17.02	16	$\frac{17.02}{16}=1.06$	$\frac{1.06}{1.06}=1$	1

Empirical formula $=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$

$$
\begin{aligned}
\mathrm{n} & =\frac{\text { Molar mass }}{\text { Calculated empirical formula mass }} \\
& =\frac{2 \times \text { vapour density }}{94}=\frac{2 \times 47}{94}=1, \text { since Molar mass }=2 \times \text { Vapour density }
\end{aligned}
$$

molecular formula $\mathrm{n} \times \mathrm{n}$ empirical formula
\therefore molecular formula $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right) \times 1=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$.
43. A Compound on analysis gave $\mathrm{Na}=14.31 \% \mathrm{~S}=9.97 \% \mathrm{H}=6.22 \%$ and $\mathrm{O}=69.5 \%$ calculate the molecular formula of the compound, if all the hydrogen in the compound is present in combination with oxygen as water of crystallization. (molecular mass of the compound is 322).
Ans.

Element	$\%$	Relative number of atoms	Simple ratio
Na	14.31	$\frac{14.31}{23}=0.62$	$\frac{0.62}{0.31}=2$
S	9.97	$\frac{9.97}{32}=0.31$	$\frac{0.31}{0.31}=1$
H	6.22	$\frac{6.22}{1}=6.22$	$\frac{6.22}{0.31}=20$
O	69.5	$\frac{69.5}{16}=4.34$	$\frac{4.34}{0.31}=14$

$$
\begin{aligned}
\therefore \quad \text { Empirical formula is } & =\mathrm{Na}_{2} \mathrm{~S} \mathrm{H}_{20} \mathrm{O}_{14} \\
\text { Empirical formula mass } & =(23 \times 2)+(32 \times 1)+(20 \times 1)+(14 \times 6) \\
& =46+32+20+224=322 \\
n & =\frac{\text { Molecular mass }}{\text { Empricial formula mass }}=\frac{322}{322}=1 \\
\text { Molecular formula } & =\mathrm{Na}_{2} \mathrm{SH}_{20} \mathrm{O}_{14}
\end{aligned}
$$

44. Balance the following equations by oxidation number method
i) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
ii) $\mathrm{KMnO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}$
iii) $\mathrm{Cu}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
[QY. 2019]
iv) $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Ans. (i)

$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
(ii)

$$
\Rightarrow \quad 2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}
$$

$$
\Rightarrow \quad 2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3} \longrightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}
$$

$$
\Rightarrow \quad 2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH}
$$

(iii)
$\mathrm{Cu}+\mathrm{H}^{+5} \mathrm{O}_{3} \longrightarrow \mathrm{C} \mathrm{C}\left(\mathrm{NO}_{3}\right)_{2}+\stackrel{+4}{\mathrm{NO}_{2}}+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{Cu}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cu}+2 \mathrm{HNO}_{3}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{K} \stackrel{+7}{\mathrm{M}} \mathrm{nO}_{4}+\mathrm{H}_{2} \stackrel{+3}{\mathrm{C}_{2}} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\stackrel{+2}{\mathrm{M}} \mathrm{nSO}_{4}+\stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$

$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{2}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
45. Balance the following equations by ion electron method.
i) $\mathrm{KMnO}_{4}+\mathrm{SnCl}_{2}+\mathrm{HCl} \longrightarrow \mathrm{MnCl}_{2}+\mathrm{SnCl}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KCl}$
ii) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}$ (in acid medium)
iii) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\mathrm{NaI}$
iv) $\mathrm{Zn}+\mathrm{NO}_{3}^{-} \longrightarrow \mathbf{Z n}^{2+}+\mathrm{NO}$ (in acid medium)

Ans. (i) Half reaction are :

$$
\begin{equation*}
\stackrel{+7}{\mathrm{M} \mathrm{nO}_{4}^{-}} \longrightarrow \mathrm{Mn}^{2+} \tag{1}
\end{equation*}
$$

and $\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}$
(1) $\Rightarrow \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{-}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
(2) $\Rightarrow \quad \mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$
(1) $\times 2 \Rightarrow$

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

$$
(2) \times 5 \Rightarrow \frac{5 \mathrm{Sn}^{2+}}{\underset{2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Sn}^{2+}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Sn}^{4+}+8 \mathrm{H}_{2} \mathrm{O}}{\longrightarrow}}
$$

(ii)

$$
\begin{align*}
& \stackrel{+3}{\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \longrightarrow \stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}} \tag{1}\\
& \stackrel{+6}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Cr}^{3+}} \tag{2}
\end{align*}
$$

(1) $\Rightarrow \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$
(3) $\times 3 \Rightarrow$

$$
\begin{equation*}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{equation*}
$$

(iii)
half reaction $\Rightarrow \stackrel{\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-} \mathrm{I}_{2} \longrightarrow \mathrm{I}^{-}}{ }$
(1) $\Rightarrow \quad 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2$
(2) \Rightarrow
$\mathrm{I}_{2}+2 \mathrm{e}^{\leftarrow} \longrightarrow 2 \mathrm{I}^{-}$
(3) $+(4) \Rightarrow$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$
(iv)

$$
\begin{align*}
& \stackrel{0}{\mathrm{Zn}} \longrightarrow \stackrel{+5 \mathrm{Zn}^{2+}}{+2}{ }_{\mathrm{N}}^{\mathrm{N}} \mathrm{O}_{3}^{-} \longrightarrow \stackrel{+2}{\mathrm{~N}} \mathrm{O} \tag{1}
\end{align*}
$$

(1) $\Rightarrow \quad \mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
(2) $\Rightarrow \quad \mathrm{NO}_{3}^{-}+3 \mathrm{e}^{-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
$(3) \times 3 \Rightarrow \quad 3 \mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+6 \mathrm{C}$
$(4) \times 2 \Rightarrow \quad 2 \mathrm{NO}_{3}^{-}+6 \mathrm{e}^{-}+8 \mathrm{H}^{+} \longrightarrow 2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{equation*}
3 \mathrm{Zn}+2 \mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Zn}^{2+}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O} \tag{6}
\end{equation*}
$$

Evaluate Yourself

1. By applying the knowledge of chemical classification, classify each of the following into elements, compounds or mixtures.
(i) Sugar
(ii) Sea water
(iii) Distilled water
(iv) Carbon dioxide
(v) Copper wire
(vi) Table salt
(vii) Silver plate
(viii) Naphthalene balls

Ans. (i) Element - Copper wire, Silver plate
(ii) Compound - Sugar, distilled water, carbondioxide, Table salt, Naphthalene balls
(iii) Mixture - Sea water
2. Calculate the relative molecular mass of the following.
(i) Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
(ii) Potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$
(iii) Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$
(iv) Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$

Ans. (i) $\mathrm{C}_{2} \mathbf{H}_{5} \mathbf{O H}:(2 \times 12)+(5 \times 1)+(1 \times 16)+(1 \times 1)=46 \mathbf{g}$
(ii) $\mathbf{K M n O}_{4}:(1 \times 39)+(1 \times 55)+(4 \times 16)=158 \mathrm{~g}$
(iii) $\mathbf{K}_{2} \mathrm{Cr}_{2} \mathbf{O}_{7}:(2 \times 39)+(2 \times 52)+(7 \times 16)=294 \mathrm{~g}$
(iv) $\mathbf{C}_{12} \mathbf{H}_{22} \mathbf{O}_{\mathbf{1 1}}:(12 \times 12)+(22 \times 1)+(11 \times 16)=342 \mathrm{~g}$
3. a) Calculate the number of moles present in $9 \mathbf{g}$ of ethane.
b) Calculate the number of molecules of oxygen gas that occupies a volume of 224 ml at 273 K and 3 atm pressure.
Ans. (a) Molar mass of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}=(2 \mathrm{x} 12)+(6 \times 1)$ $=30 \mathrm{~g} \mathrm{~mol}-1$
(b) At 273 K and 1 atm pressure 1 mole of a gas occupies a volume of 22.4 L

Therefore,
number of moles of oxygen, that occupies a volume of 224 ml at 273 K and 3 atm pressure
$=\frac{1 \mathrm{~mole}}{273 \mathrm{~K} \times 1 \mathrm{~atm} \times 22.4 \mathrm{~L}} \times 0.224 \mathrm{~L} \times 273 \mathrm{~K} \times 3 \mathrm{~atm}$
$=0.03$ mole
1 mole of oxygen contains 6.022×10^{23} molecules
0.03 mole of oxygen contains $=6.022 \times 10^{23} \times 0.03$
$=1.807 \times 10^{22}$ molecules of oxygen
4. a) 0.456 g of a metal gives $\mathbf{0 . 6 0 6 g}$ of its chloride. Calculate the equivalent mass of the metal.
Ans. Mass of the metal $=W_{1}=0.606 \mathrm{~g}$
\therefore Mass of chlorine $=W_{2}=0.606-0.456=0.15 \mathrm{~g}$
0.15 g of chlorine combine with 0.456 g of metal
$\therefore 35.46 \mathrm{~g}$ of chlorine will combine with
$\frac{0.456}{0.15} \times 35.46=107.76 \mathrm{~g} \mathrm{eq}^{-1}$
Mass of chloride $=0.606-0.456=0.146 \mathrm{~g}$
0.146 g of chlorine combines with 0.456 g of metal.
$\therefore 35.5 \mathrm{~g}$ of chlorine will combines with

$$
=\frac{35.5 \times 0.456}{0.146}
$$

$=110.8 \mathrm{~g}$ of metal
\therefore equivalent mass of metal $=110.8 \mathrm{~g} \mathrm{equ}^{-1}$
b) Calculate the equivalent mass of potassium dichromate. The reduction half reaction in acid medium is,

$$
\begin{array}{r}
{\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\right.} \\
\left.4 \mathrm{H}_{2} \mathrm{O}+3(\mathrm{O}) 3 \times 16=48294 \mathrm{~g}\right]
\end{array}
$$

Ans. 48 parts by mass of oxygen are made available from 294 parts by mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\therefore 8$ parts by mass of oxygen will be furnished by
$=\frac{294 \times 8}{48}=49$
Equivalent mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=49 \mathrm{~g}$ equiv ${ }^{-1}$

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
5. A Compound on analysis gave the following percentage composition $\mathrm{C}=54.55 \%, \mathrm{H}=9.09 \%, \mathrm{O}=36.36 \%$. Determine the empirical formula of the compound.
Ans.

Element	Percentage Composition	Atomic mass	Relative no. of atoms $=$ $\frac{\text { Percentage }}{\text { Atomic mass }}$	Simple ratio
C	54.55%	12	$54.55 / 12=4.55$	$4.55 / 2.27=2$
H	9.09%	1	$9.09 / 1=9.09$	$9.09 / 2.27=4$
O	36.36%	16	$36.36 / 16=2.27$	$2.27 / 2.27=1$
Empirical formula $\left(\mathrm{C}_{2} \mathbf{H}_{4} \mathbf{O}\right)$				

6. Experimental analysis of a compound containing the elements x, y, z on analysis gave the following data. $x=32 \%, y=24 \%, z=44 \%$. The relative number of atoms of x, y and z are 2,1 and 0.5 , respectively. (Molecular mass of the compound is $\mathbf{4 0 0} \mathrm{g}$) Find out.
i) The atomic masses of the element x, y, z.
ii) Empirical formula of the compound and
iii) Molecular formula of the compound.

Ans.

Element	Percentage Composition	Relative no. of atoms $=$ $\frac{\text { Percentage }}{\text { Atomic mass }}$	Atomic mass= Percentage	Simple ratio
X	32%	2	16	4
Y	24%	1	24	2
Z	44%	0.5	88	1
Empirical formula $\left(\mathbf{X}_{\mathbf{4}} \mathbf{Y}_{\mathbf{2}} \mathbf{Z}\right)$				

Calculated empirical formula mass

$$
\begin{aligned}
& =(16 \times 4)+(24 \times 2)+88 \\
& =64+48+88=200 \\
\mathrm{n} & =\frac{\text { molar mass }}{\text { calculated empirical formula mass }} \\
\mathrm{n} & =\frac{400}{200} \\
& =2
\end{aligned}
$$

\therefore Molecular formula $\left(\mathbf{X}_{4} \mathbf{Y}_{2} \mathbf{Z}\right)_{2}=\mathrm{X}_{8} \mathrm{Y}_{4} \mathrm{Z}_{2}$
7. The balanced equation for a reaction is given below

$$
2 x+3 y \rightarrow 41+m
$$

When 8 moles of x react with 15 moles of y, then
i) Which is the limiting reagent?
ii) Calculate the amount of products formed.
iii) Calculate the amount of excess reactant left at the end of the reaction.

Ans.

Content	Reactant		Products	
	x	y	l	m
Stoichiometric coefficient	2	3	4	1
No. of moles allowed to react	8	15	-	-
No. of moles of reactant reacted and product formed	8	12	16	4
No. of moles of un-reacted reactants and the product formed	-	3	16	4

Limiting reagent : x
Product formed : 16 moles of $l \& 4$ moles of m
Amount of excess
reactant : 3 moles of y
8. Balance the following equation using oxidation number method
$\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$
Ans.

$$
\stackrel{+3}{\mathrm{As}_{2}} \stackrel{2}{\mathrm{~S}}_{3}+\stackrel{+5}{\mathrm{H}} \mathrm{O}_{3} \mathrm{O} \mathrm{H}_{3} \stackrel{+5}{\mathrm{AsO}_{4}}+\mathrm{H}_{2}{\stackrel{+6}{\mathrm{~S}} \mathrm{O}_{4}+\stackrel{+2}{\mathrm{~N}} \mathrm{O}}^{2}
$$

Equate the total no. of electrons in the reactant side by cross multiplying,
$\Rightarrow 3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$
Based on reactant side, balance the products
$\Rightarrow 3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3} \rightarrow 6 \mathrm{H}_{3} \mathrm{AsO}_{4}+9 \mathrm{H}_{2} \mathrm{SO}_{4}+28 \mathrm{NO}$
Product side :36 hydrogen atoms \& 88 oxygen atoms
Reactant side :28 hydrogen atoms \& 84 oxygen atoms
Difference is 8 hydrogen atoms \& 4 oxygen atoms
\therefore Add 4 H 2 O molecule on the reactant side.
Balanced equation is,
$3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{H}_{3} \mathrm{AsO}_{4}+9 \mathrm{H}_{2} \mathrm{SO}_{4}+28 \mathrm{NO}$

This is Only for Sample

Government Exam Questions and Answers

PART - I

Choose the Correct Answer 1 MARK

1. The equivalent mass of a divalent metal element is $10 \mathrm{~g} \mathrm{eq}^{-1}$. The molar mass of its anhydrous oxide is
[Govt. MQP-2018]
(a) 46 g
(b) 36 g
(c) 52 g
(d) none of these
[Ans. (c) 52 g]
Hint: Atomic mass of divalent metal is equal to 2 multiple of atomic mass of metal +2 multiple of atomic mass of oxygen
2. Match the list I with List II correctly by using the code given below the list.
[QY. 2018]

List I (no. of moles)		List II (Amount)	
A	0.1 mole	$\mathbf{1}$	4480 ml of CO_{2}
B	0.2 mole	$\mathbf{2}$	200 mg of hydrogen gas
C	0.25 mole	$\mathbf{3}$	9 ml of water
D	0.5 mole	$\mathbf{4}$	1.51×10^{23} molecules of oxygen

	A	B	C	D
(a)	2	3	4	1
(b)	4	3	1	2
(c)	3	1	4	2
(d)	2	1	4	3

[Ans. (d) 214 3]
Hint: Number of moles is equal to Mass/ Molar mass Number of moles is equal to Volume/ molar volume
3. The oxidation number of chromium in dichromate lion is
[QY-2018]
(a) +4
(b) +6
(c) +5
(d) 0
[Ans. (b) +6]
4. The empirical formula of glucose is : [HY. 2019]
(a) $\mathrm{CH}_{2} \mathrm{O}$
(b) CHO
(c) $\mathrm{CH}_{2} \mathrm{O}_{2}$
(d) $\mathrm{CH}_{3} \mathrm{O}_{2}$
[Ans. (a) $\mathrm{CH}_{2} \mathrm{O}$]
5. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{~F}_{2}$ is \qquad . [June 2019]
(a) +4
(b) -4
(c) 0
(d) +2
[Ans. (c) 0]
6. The relative molecular mass of ethanol is
(a) 0.46 g
(b) 4.6 g
(c) 460 g
(d) 46 g
[Ans. (d) 46 g]

PART - II

Answer the Questions

2 MARK

1. Write the electronic concept of oxidation and reduction reactions.
[QY. \& HY. 2018]
Ans. The process can be explained on the basis of electrons. The reaction involving loss of electron is termed oxidation
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$(loss of electron-oxidation).
The reaction involving gain of electron is termed reduction.
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$ (gain of electron-reduction)
2. How many moles of hydrogen is required to produce 10 moles of ammonia ?
[HY-2018]
Ans. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
To produce 2 moles of ammonia, 3 moles of hydrogen are required
To produce 10 moles of ammonia
$=\frac{3 \text { moles of } \mathrm{H}_{2}}{2 \text { moles of } \mathrm{NH}_{3}} \times 10$ moles of NH_{3}
$=15$ moles of hydrogen are required.
3. Calculate oxidation number of oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$.
[Mar. 2019]
Ans. hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$
$2(+1)+2 \mathrm{x}=0 ; \Rightarrow 2 \mathrm{x}=-2 ; \Rightarrow \mathrm{x}=-1$
4. What is combination reaction? Give example.
[HY. 2019]
Ans. When two or more substance combine to form a single substance, the reactions are combination reactions.

$$
\begin{gathered}
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C} \\
\mathrm{Ex}-2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
\end{gathered}
$$

5. Calculate the oxidation states of oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$ and KO_{2}.
[QY. 2019]
Ans. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is -1 .
$2(+1)+2 \mathrm{x}=0 ; \Rightarrow 2 \mathrm{x}=-2 ; \Rightarrow \mathrm{x}=-1$
Super oxides such as KO_{2} is $=-1 / 2$
$+1+2 \mathrm{x}=0 ; \Rightarrow 2 \mathrm{x}=-1 ; \Rightarrow \mathrm{x}=-1 / 2$.
6. Define basicity. Find the basicity of ortho-phosphoric acid.
[Sep. 2020]
Ans. (i) Basicity : The number of replaceable hydrogen atoms present in a molecule of the acid is referred to as its basicity.
(ii) Basicity of ortho-phosphoric acid - $\mathrm{H}_{3} \mathrm{PO}_{4}$

The number of Hydrogen atoms bonded to the oxtgen atoms in this compound is 3 . Therefore, the basicity of ortho-phosphoric acid is 3 .

PART - III

Answer the Questions

3 MARK

1. Statement 1 : Two mole of glucose contains $\mathbf{1 2 . 0 4 4}$ $\times \mathbf{1 0}^{\mathbf{2 3}}$ molecules of glucose
Statement 2 : Total number of entities present in one mole of any substance is equal to 6.02×10^{22}. [Govt. MQP-2018]
Whether the above statements are true? Is there any relation between these two statements?
Ans. The statements $1 \& 2$ are true. But there is no relation between statement 1 and statement 2.
2. Calculate the total number of electrons present in 17 g of ammonia.
[Govt. MQP-2018]
Ans. No. of electrons present in one ammonia $\left(\mathrm{NH}_{3}\right)$ molecule $(7+3)=10$
No. of moles of $\mathrm{NH}_{3}=\frac{\text { Mass }}{\text { Molar mass }}=\frac{17 \mathrm{~g}}{17 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}$ No. of molecules present in 1 mol of NH_{3}

$$
=6.023 \times 10^{23}
$$

No. of electrons present in 1 mol of NH_{3}

$$
\begin{aligned}
& =10 \times 6.023 \times 10^{23} \\
& =6.023 \times 10^{24}
\end{aligned}
$$

3. Calculate the amount of water produced by the combustion of $32 \mathbf{g}$ of methane.
[QY-2018]
Ans. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
As per the stoichiometric equation,
Combustion of 1 mole (16 g) CH_{4} produces 2 moles $(2 \times 18=36 \mathrm{~g})$ of water.

$\xrightarrow[(2 \times 1)]{\mathrm{H}_{2} \mathrm{O}}+(1 \times 16)=18 \mathrm{~g} \mathrm{~mol}^{-1}$
Combustion of $32 \mathrm{~g} \mathrm{CH}_{4}$ produces $\frac{36 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{16 \mathrm{gCH}_{4}} \times \frac{2}{22 \mathrm{gCH}_{4}}=72 \mathrm{~g}$ of water
4. Calculate the equivalent mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
[Mar. 2019]
Ans.

$$
\begin{align*}
\mathrm{H}_{2} \mathrm{SO}_{4} \text { basicity } & =2 \mathrm{eq} \mathrm{~mol} \\
\text { Molar mass of } \mathrm{H}_{2} \mathrm{SO}_{4} & =(2 \times 1)+(1 \times 32)+ \\
& =98 \mathrm{~g} \mathrm{~mol}^{-1}
\end{align*}
$$

Gram equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{98}{2}=49 \mathrm{~g} \mathrm{eq}^{-1}$
5. $X_{2}+3 Y_{2} \rightarrow 2 X Y_{3}$ In this reaction 2 moles of X_{2} and 4.5 moles of Y_{2} react to give products. Which is the limiting agent and calculate the no. of moles of $X_{2} . Y_{2}$ and $X Y_{3}$ in the reaction mixture? [QY. 2019] Ans.

	X_{2}	+	$3 \mathrm{Y}_{2}$
No. of moles	2	4.5	$2 \mathrm{XY}_{3}$
SC	1	3	2
ratio	$2 / 1$	$4.5 / 3$	-
	$2(\mathrm{ER})$	$1.5(\mathrm{LR})$	-
mole-mole	$=\frac{n X_{2}}{1}=\frac{n Y_{2}}{3}=\frac{n X Y_{3}}{2}$		
	$=\frac{2}{1}=\frac{4.5}{3}=\frac{n X Y_{3}}{2}$		
	$\frac{4.5}{3}=\frac{n X Y_{3}}{2}=3$ moles		

No. of moles of $2 \mathrm{XY}_{3}=3$ moles

PART - IV

Answer All the Questions 5 MARK

1. Define oxidation number. Balance the following equation using oxidation number method.

$$
\begin{aligned}
\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathbf{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \\
+ \text { NO [Govt. MQP-2018] }
\end{aligned}
$$

Ans. Oxidation number : It is defined as the imaginary charge left on the atom when all other atoms of the compound have been removed in their usual oxidation states that are assigned according to set of rules.

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores

Solution :
Step 1 : $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+$
Step 2 : Assign the oxidation numbers and identify the redox couples.

Step 3 : Multiply $\mathrm{As}_{2} \mathrm{~S}_{3}$ by 3 and HNO_{3} by 2 .

Step 4 : Balance all the elements in the equation
(As, S and N) except H and O .
$3 \mathrm{As}_{2} \mathrm{~S}_{3}+2 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 6 \mathrm{H}_{3} \mathrm{AsO}_{4}+9 \mathrm{H}_{2} \mathrm{SO}_{4}$
+2 NO
Step 5 : Balance the complete equation including O \& H.
$3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[9 \mathrm{H}_{2} \mathrm{SO}_{4}+28 \mathrm{NO}]{6 \mathrm{H}_{3} \mathrm{AsO}_{4}}+$
2. What are disproportionation reaction. (or) What are auto redox reactions? Give an example.
[June 2019]
Ans. Disproportionation reaction (Auto redox reactions) : In some redox reactions, the same compound can undergo both oxidation and reduction. In such
 reactions, the oxidation state of one and the same element is both increased and decreased. These reactions are called disproportionation reactions.
3. Define limiting reagent. [Govt. MQP-2018; QY. 2018]

Ans. Limiting reagent : When a reaction is carried out using non-stoichiometric quantities of the reactants, the product yield will be determined by the reactant that is completely consumed. It limits the further reaction from taking place and is called as the limiting reagent.
4. Calculate the empirical and molecular formula of the compound containing 80% Carbon, 20% Hydrogen. If the molecular mass of the compound is $\mathbf{3 0}$ then determine the molecular formula.
[QY. 2019]
Ans. For C $\Rightarrow 80 / 12=6.6$
for $\mathrm{H} \Rightarrow 20 / 1=20$ now divide 6.6 and 20 by 6.6 to get simple whole no. ratio of C and H which will come 1:3 so emperical formula is CH_{3} and its mass is 15
Now to calculate n we have $30 / 15=2$
so molecular formula is $\mathrm{CH}_{3} \times 2=\mathrm{C}_{2} \mathrm{H}_{6}$

ADDITIONAL QUESTIONS

Additional Choose the Correct

 Answers1 MARK

1. Consider the following statements

1 Matter possesses mass.
222 carat gold is a mixture.
3 Dry ice is a compound.
Which of the following statement(s) given above is/ are correct?
(a) $1 \& 3$
(b) only 1
(c) $1 \& 2$
(d) 1, $2 \& 3$
[Ans. (d) 1, 2 \& 3]
2. The solid state of matter is converted into gas by
(a) sublimation
(b) deposition
(c) freezing
(d) condensation
[Ans. (a) sublimation]
3. Match the list I with List II and select the correct answer using the code given below the list.

4. The characteristic feature of orderly arrangement of molecules belongs to
(a) Solids
(b) Liquid
(c) Gases
(d) None of these
[Ans. (a) Solids]
5. The volume occupied by any gas at S.T.P. is \qquad -
(a) 22.4 litres
(b) 2.24 litres
(c) 224 litres
(d) 0.224 litres
[Ans. (a) 22.4 litres]
6. What will be the basicity of $\mathrm{H}_{3} \mathrm{BO}_{3}$, which is not a protic acid?
(a) one
(b) two
(c) three
(d) four
[Ans. (a) one]
7. Which form of based on physical characteristics possess neither definite volume nor definite shape?
(a) Solids
(b) Liquids
(c) Gases
(d) Both (a) and (b)
[Ans. (c) Gases]
8. Identify the incorrect statement about a compound.
(a) A molecule cannot be separated into its constituent elements by physical methods of separation
(b) A molecule of a compound has atoms of different elements
(c) A compound retains the physical properties of its constituent element
(d) The ratio of atoms of different elements in a compound is fixed
[Ans. (c) A compound retains the physical properties of its constituent element]
9. Which among the following statement(s) describe an element?
i) It is pure substance which could be split into two or more simpler substance.
ii) It is a pure substance which cannot be split into simpler substance
iii) It's composition is not uniform
iv) All the above
(a) only (iv)
(b) only (ii)
(c) (ii) and (iii)
(d) (i) and (iii)
[Ans. (b) only (ii)]
10. Atoms are too small with diameter of $10^{-10} \mathrm{~m}$ and weigh approximately
(a) $10^{-27} \mathrm{~kg}$
(b) $10^{-27} \mathrm{~g}$
(c) $10^{-31} \mathrm{~kg}$
(d) $10^{-31} \mathrm{~g}$
[Ans. (a) $\mathbf{1 0}^{-27} \mathrm{~kg}$]
11. 1 amu (or) $1 \mathbf{u} \approx$
(a) $1.6605 \times 10^{-25} \mathrm{~kg}$
(b) $1.6605 \times 10^{-26} \mathrm{~kg}$
(c) $1.6605 \times 10^{-27} \mathrm{~kg}$
(d) $1.6605 \times 10^{-28} \mathrm{~kg}$
[Ans. (c) $\left.1.6605 \times 10^{-27} \mathrm{~kg}\right]$
12. 12 g of carbon-12 contains \qquad carbon atoms.
(a) 6.022×10^{23}
(b) 6
(c) 12
(d) 12.022×10^{23}
[Ans. (a) 6.022×10^{23}]
13. Atomicity of nitrogen is
(a) 1
(b) 2
(c) 3
(d) zero
[Ans. (b) 2]
Hint: Atomicity is defined as total number of atoms is present in the molecule
14. Unit of Avogadro's number is
(a) mol
(b) g
(c) mol^{-1}
(d) no unit
[Ans. (c) mol^{-1}]
15. Statement I : Equivalent mass of $\mathbf{M g}$ is determined by Oxide Method.
Statement II : Molecular mass is calculated using vapour density.
(a) Both the statements are individually true
(b) Both the statements are individually true and statement II is the correct explanation of statement I.
(c) Statement I is true but statement II is false.
(d) Statement I is false but statement II is true.
[Ans. (a) Both the statements are individually true]
16. Match list I with list II and identify the correct code.

List I		List II	
A	Bronze	$\mathbf{1}$	Element
B	Table salt	$\mathbf{2}$	Homogeneous mixture
C	Gold	$\mathbf{3}$	Alloy
D	Petrol	$\mathbf{4}$	Compound

	A	B	C	D
(a)	1	4	2	3
(b)	3	4	1	2
(c)	2	3	4	1
(d)	4	2	3	1

[Ans. (b) 341 2]
17. One mole of sulphuric acid contains \qquad oxygen atoms.
(a) 4×10^{23}
(b) $4 \times 6.023 \times 10^{-23}$
(c) $4 \times 6.023 \times 10^{23}$
(d) $4 \times 6.023 \times 10^{32}$
[Ans. (c) $4 \times 6.023 \times 10^{23}$]
18. Assertion : An element that has a fractional atomic mass.
Reason : An element exist as isotope.
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false.
[Ans. (a) Both assertion and reason are correct and reason is the correct explanation for assertion.]
19. The oxidation number of hydrogen in LiH is \qquad -
(a) +1
(b) -1
(c) +2
(d) -2
[Ans. (b) -1]

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores

Sura's ■ XI Std - Chemistry |un Chapter 01 III Basic Concepts Of Chemistry And Chemical Calculations

20. The oxidation number of oxygen in O_{2} is \qquad .
(a) 0
(b) +1
(c) +2
(d) -2
[Ans. (a) 0]
21. The empirical formula and molecular mass of a compound are $\mathrm{CH}_{2} \mathrm{O}$ and 180 g respectively. What will be the molecular formula of the compound?
(a) $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}$
(b) $\mathrm{CH}_{2} \mathrm{O}$
(c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
[Ans. (c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$]

Hint: Molecular formula is equal to empirical formula multiple molecular weight
22. One 'U' stands for the mass of
(a) An atom of carbon-12
(b) $1 / 11^{\text {th }}$ of the carbon- 12
(c) $1 / 12^{\text {th }}$ of hydrogen atom
(d) One atom of any of the element
[Ans. (b) $1 / 12^{\text {th }}$ of the carbon-12]
23. In the reaction $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4}^{+}+\mathbf{O} \overline{\mathrm{H}}$, $\mathbf{N H}_{3}$ is acidic in nature. The reason for its acidity is \qquad .
(a) Acceptance of one H^{+}from water
(b) Release of one OH^{-}ion
(c) Due to the nitrogen atom
(d) All the above.
[Ans. (a) Acceptance of one H^{+}from water]
24. Calculate the percentage of N in ammonia molecule.
(a) 121.42%
(b) 28.35%
(c) 82.35%
(d) 28.53%
[Ans. (c) 82.35\%]
Sol : Molar mass of $\mathrm{NH}_{3}=14+1 \times 3=17 \mathrm{~g} \mathrm{~mol}^{-1}$
Percentage of $\mathrm{N}=\frac{\text { mass of } \mathrm{N} \text { in } \mathrm{NH}_{3}}{\text { molar mass of } \mathrm{NH}_{3}} \times 100$

$$
=\frac{14}{17} \times 100=82.35 \%
$$

25. If a beaker holds 576 g of water, what will be the gram molecules of water in that beaker?
(a) 23 gram molecule
(b) 23%
(c) 32%
(d) 32 gram molecule
[Ans. (d) 32 gram molecule]
Sol: Molecular mass of $\mathrm{H}_{2} \mathrm{O}=2 \times 1+16$

$$
\begin{aligned}
& =18 \mathrm{~g} \mathrm{~mol}^{-1} \\
18 \mathrm{~g} \text { of water } & =1 \mathrm{gram} \text { molecule } \\
\therefore 576 \mathrm{~g} \text { of water } & =\frac{1 \times 576}{18} \\
& =32 \text { gram molecules. }
\end{aligned}
$$

26. Match the following prefixes with their multiples.

Equivalent Mass (E)		Molecular Mass (M)	
A	$\mathrm{E}_{\mathrm{KMnO}_{4}}$ (Acidic)	$\mathbf{1}$	$\mathrm{M} / 2$
B	$\mathrm{E}_{\mathrm{KMnO}_{4}}$ (Neutral)	$\mathbf{2}$	M
C	$\mathrm{E}_{\mathrm{H}_{3} \mathrm{PO}_{2}}$	$\mathbf{3}$	$\mathrm{M} / 3$
D	$\mathrm{E}_{\mathrm{H}_{3} \mathrm{PO}_{3}}$	$\mathbf{4}$	$\mathrm{M} / 5$

	A	B	C	D
(a)	4	3	2	1
(b)	4	2	1	3
(c)	3	4	2	1
(d)	3	1	4	2

[Ans. (a) 432 1]
27. The oxidation state of a element in its uncombined state is
(a) zero
(b) +1
(c) -1
(d) none
[Ans. (a) zero]
28. $\mathrm{Fe}^{2} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$is a \qquad reaction.
(a) redox
(b) reduction
(c) oxidation
(d) decomposition
[Ans. (c) oxidation]
29. Assertion : The atomic masses of most of the elements are in fraction.
Reason : The atomic mass represents the ratio of the average mass of the atom to one avogram.
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false.
[Ans. (b) Both assertion and reason are correct but reason is not the correct explanation for assertion]
30. Identify disproportionation reaction.
(a) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \longrightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}$
(c) $2 \mathrm{~F}_{2}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{~F}^{-}+\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O}$
(d) $2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
[Ans. (d) $2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$]
31. The oxidation number of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is \qquad .
(a) +6
(b) -6
(c) +7
(d) -7
[Ans. (a) +6]

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
32. Assertion : The number of oxygen atoms in 16 g of oxygen and 16 g of ozone is same.
Reason : Each of the species represent 1 g atom of oxygen.
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false.
[Ans. (a) Both assertion and reason are correct and reason is the correct explanation for assertion.]
33. Assertion : The ash is produced by burning paper in air is lighter than the original mass of paper.
Reason : The residue is left after the combustion of a chemical reaction that entities is always lighter.
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false.
[Ans. (c) Assertion is true but reason are false.]
34. Assertion : Oxalic acid is a dibasic acid Reason : It contains two basic radicals
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false. [Ans. (c) Assertion is true but reason are false.]
35. How many moles of magnesium phosphate, $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will contain 0.25 moles of oxygen atoms?
(a) 0.02
(b) 3.125×10^{-2}
(c) 1.25×10^{-2}
(d) 2.5×10^{-2}
[Ans. (b) 3.125×10^{-2}]
Sol : 8 mol of $\mathrm{O}=1 \mathrm{~mol}$ of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
0.25 \mathrm{~mol} \mathrm{O}=\frac{1 \times 0.25}{8} \mathrm{~mol} \text { of } \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

$$
=3.125 \times 10^{-2} \mathrm{~mol} \text { of } \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2} .
$$

36. Assertion : Equal volumes of all the gases do not contain equal number of atoms.
Reason : Atom is the smallest particle which takes part in chemical reactions.
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false.
[Ans. (b) Both assertion and reason are correct but reason is not the correct explanation for assertion]
37. Assertion : Fluorine has an oxidation state of -1 in all its compounds.
Reason : Fluorine is the most electronegative element of the periodic table .
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false.
[Ans. (a) Both assertion and reason are correct and reason is the correct explanation for assertion.]
38. The compound in which mass percentage of carbon is 75% and that of hydrogen is $\mathbf{2 5 \%}$ is
(a) $\mathrm{C}_{2} \mathrm{H}_{6}$
(b) $\mathrm{C}_{2} \mathrm{H}_{2}$
(c) CH_{4}
(d) $\mathrm{C}_{2} \mathrm{H}_{4}$
[Ans. (c) CH_{4}]
39. Among the three metals, zinc, copper and silver, the electron releasing tendency decreases in the following order.
(a) zinc >silver>copper
(b) zinc >copper >silver
(c) silver $>$ copper $>$ zinc
(d) copper >silver>zinc
[Ans. (b) zinc >copper >silver]
40. Consider the following statements :
(i) Oxidation number of $\mathrm{He}=$ zero
(ii) Increase in oxidation number results in reduction.
(iii) The substance undergoing increase in oxidation number is reducing agent.
Which among the above statement(s) is/are correct?
(a) only (i)
(b) (ii) and (iii)
(c) (i) and (iii)
(d) only (ii)
[Ans. (c) (i) and (iii)]
41. What is the ratio of empirical formula mass to molecular formula mass of benzene?
(a) $1: 6$
(b) $6: 1$
(c) $2: 3$
(d) $3: 2$
[Ans. (a) 1:6]

This is Only for Sample
42. Rusting of iron is an example of \qquad reaction.
(a) Combustion
(b) decomposition
(c) reduction reaction and redox reaction
(d) hydrolysis
[Ans. (c) reduction reaction and redox reaction]
43. Maximum oxidation state is present in the central metal atom of which compound
(a) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(b) MnO_{2}
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(d) MnO
[Ans. (a) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$]
44. Which of the following statement(s) is/are not true about the following decomposition reaction. $2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
(i) Potassium is undergoing oxidation
(ii) Chlorine is undergoing oxidation
(iii) Oxygen is reduced
(iv) None of the species are under going oxidation and reduction.
(a) only (iv)
(b) (i) and (iv)
(c) (iv) and (iii)
(d) All of these
[Ans. (b) (i) and (iv)]
45. Identify the correct statement(s) with respect to the following reaction :
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathbf{H}_{2}$
(i) Zinc is acting as an oxidant
(ii) Chlorine is acting as a reductant
(iii) Hydrogen is not acting as an oxidant
(iv) Zn is acting as a reductant
(a) only (ii)
(b) only (iv)
(c) both (ii) and (iii)
(d) both (ii) and (i)
[Ans. (b) only (iv)]
46. Match the list-I with list-II and select the correct answer using the code given below the list.

List-I		List-II	
A	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	$\mathbf{1}$	+5
\mathbf{B}	MnO_{4}^{2-}	$\mathbf{2}$	+6
\mathbf{C}	VO_{3}^{2-}	$\mathbf{3}$	+3
\mathbf{D}	FeF_{6}^{3-}	$\mathbf{4}$	+7

	A	B	C	D
(a)	3	1	4	2
(b)	4	3	2	1
(c)	2	4	1	3
(d)	3	2	1	4

[Ans. (c) 241 3]
47. Identify the correct statements with reference to the given reaction
$\mathbf{P}_{4}+3 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
(i) Phosphorous is undergoing reduction only
(ii) Phosphorous is undergoing oxidation only
(iii) Phosphorous is undergoing both oxidation and reduction.
(iv) Hydrogen is undergoing neither oxidation nor reduction.
(a) only (iii)
(b) both (iii) and (iv)
(c) only (i)
(d) None of these
[Ans. (b) both (iii) and (iv)]
48. Match the items in column list-I with relevant items in list-II.

List-I		List-II	
A	Ions having positive charge	$\mathbf{1}$	anion
B	Ions having negative charge	$\mathbf{2}$	-1
C	Oxidation number of fluorine in NaF	$\mathbf{3}$	0
D	The sum of oxidation number of all atoms in a neutral molecule	$\mathbf{4}$	cation

	A	B	C	D
(a)	3	4	2	1
(b)	1	2	3	4
(c)	2	3	4	1
(d)	4	1	2	3

[Ans. (d) 412 3]
51. The change in the oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} in the following industrial reaction :

$$
2 \mathrm{H}_{2} \mathrm{~S}_{(g)}+\mathrm{SO}_{2(g)} \longrightarrow 3 \mathrm{~S}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)}
$$

(a) -2 to $0,+4$ to 0
(b) -2 to $0,+4$ to -1
(c) -2 to $-1,+4$ to 0
(d) -2 to $-1,+4$ to -2
[Ans. (a) -2 to $0,+4$ to 0]

Sol :

52. Give an example of molecule in which the ratio of the molecular formula is six times the empirical formula.
(a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) $\mathrm{CH}_{2} \mathrm{O}$
(c) CH_{4}
(d) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
[Ans. (a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$]

This is Only for Sample
53. Assertion (A) : In the reaction between potassium permanganate and potassium iodide, permanganate ions act as oxidising agent.
Reason (R) : Oxidation state of manganese changes from +2 to +7 during the reaction.
(a) Both A and R are true and R explains A
(b) Both A and R are true but R does not explain A
(c) A is true but R is false
(d) Both A and R are false
[Ans. (c) A is true but R is false]
54. In which of the following reactions, hydrogen peroxide acts as an oxidising agent?
(a) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(b) $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
(c) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$
[Ans. (b) $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$]
55. Two elements X and Y (atomic mass of $X=75$; $Y=16$) combine to give a compound having 76% of X. The formula of the compound is?
(a) XY
(b) $\mathrm{X}_{2} \mathrm{Y}$
(c) $\mathrm{X}_{2} \mathrm{Y}_{2}$
(d) $X_{2} Y_{3}$
[Ans. (d) $X_{2} Y_{3}$]
56. Assertion (A) : Among halogens fluorine is the best oxidant.
Reason (R) : Fluorine is the most electronegative atom.
(a) Both A and R are true and R explains A
(b) Both A and R are true but R does not explain A
(c) A is true but R is false
(d) Both A and R are false
[Ans. (a) Both A and R are true and R explains A]
57. Equal volume of nitrogen and Hydrogen gases will react to form ammonia in favourable condition then the limiting reagent is
(a) H_{2}
(b) N_{2}
(c) NH_{3}
(d) No reactant is a limiting regent
[Ans. (b) N_{2}]
58. Identify the redox reaction taking place in a beaker.

Initial stage

Final stage
(a) $\mathrm{Zn}_{(s)}+\mathrm{Cu}^{2+}{ }_{(a q)} \longrightarrow \mathrm{Zn}^{2+}{ }_{(a q)}+\mathrm{Cu}_{(s)}$
(b) $\mathrm{Cu}_{(s)}+2 \mathrm{Ag}_{(a q)}^{+} \longrightarrow \mathrm{Cu}^{2+}{ }_{(a q)}+2 \mathrm{Ag}_{(s)}$
(c) $\mathrm{Cu}_{(s)}+\mathrm{Zn}^{2+}{ }_{(a q)} \longrightarrow \mathrm{Zn}_{(s)}+\mathrm{Cu}^{2+}{ }_{(a q)}$
(d) $2 \mathrm{Ag}_{(s)}+\mathrm{Cu}^{2+}{ }_{(a q)} \longrightarrow 2 \mathrm{Ag}_{(a q)}^{+}+\mathrm{Cu}_{(s)}$
$\left[\right.$ Ans. $(\mathrm{d}) \mathbf{2 A g}_{(s)}+\mathrm{Cu}^{2+}{ }_{(a q)} \longrightarrow \mathbf{A g}_{(a q)}{ }^{\left(\mathrm{Cu}_{(s)}\right]}$
Reason: Since Cu is more reactive than Ag , it displaces Ag^{+}ions from its salt solution. Which get deposited on the copper rod.
59. Match the list I with List II and select the correct answer using the code given below the list.

List-I		List-II	
A	n	$\mathbf{1}$	$6.02 \times 10^{23} \mathrm{Ne}$ atoms
B	Vapour density	$\mathbf{2}$	0.01 moles of solute in one L of solution
C	22.4 L at S.T.P	$\mathbf{3}$	Molecular mass/2
D	Centimolar solution	$\mathbf{4}$	Molecular mass/ empirical formula mass

	A	B	C	D
(a)	2	3	4	1
(b)	4	3	1	2
(c)	3	1	4	2
(d)	2	1	4	3

[Ans. (b) 431 2]
62. A compound has an empirical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. If the value of $\mathbf{n}=2$ the molecular formula of the compound is \qquad -
(a) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(b) $\mathrm{CH}_{2} \mathrm{O}$
(c) CH_{2}
(d) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
[Ans. (d) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$]
63. If ten volumes of dihydrogen gases react with five volumes of dioxygen gases that, how many volumes of water vapour would be produced?
(a) 1
(b) 2
(c) 5
(d) 10
[Ans. (d) 10]
Hint $: 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(g)}$
64. Limiting reagent is in a chemical reaction is the reactant in which
(a) left some amount unreacted after the completion of reaction
(b) reacts completely in the reaction
(c) does not react in the reaction
(d) All of these
[Ans. (b) reacts completely in the reaction]
65. Assertion : When 4 moles of H_{2} reacts with 2 moles of O_{2}, then 4 moles of water is formed.
Reason : O_{2} will act as limiting reagent.
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reason is not the correct explanation of assertion.
(c) Only assertion is true but reason is false.
(d) Both assertion and reason are false.
[Ans. (b) Both assertion and reason are true but reason is not the correct explanation of assertion.]
66. Match the list-I with list-II and select the correct answer using the code given below the list.

List-I		List-II	
A	Molecular formula	$\mathbf{1}$	Completely consumed
B	Stoichiometric Equation	$\mathbf{2}$	Left unreacted
C	Limiting reagent	$\mathbf{3}$	$n \times$ Empirical formula
D	Excess reagent	$\mathbf{4}$	Balanced equation

	A	B	C	D
(a)	3	4	2	1
(b)	3	4	1	2
(c)	4	3	2	1
(d)	4	3	1	2

[Ans. (b) 3412 2]
69. Assertion : $\mathrm{K}_{20} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is the empirical formula of potash alum.
Reason : It is a double salt.
(a) Both assertion and reason are correct and reason is the correct explanation for assertion.
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion
(c) Assertion is true but reason are false.
(d) Both assertion and reason are false.
[Ans. (b) Both assertion and reason are correct but reason is not the correct explanation for assertion]
70. Anything that has mass and occupies space is called
(a) matter
(b) weight
(c) energy
(d) system
[Ans. (a) matter]
71. The mass of one mole of a substance is \qquad -
(a) molecular mass
(b) Atomic mass
(c) molar mass
(d) Nuclear mass
[Ans. (c) molar mass]
72. Which of the following is correct?
(a) Elemental analysis of a compound gives the mass percentage of atoms present in the compound
(b) Using the mass percentage, we can determine the empirical formula of the compound
(c) Molecular formula of the compound can be arrived at from the empirical formula using the molar mass of the compound.
(d) All the above are correct
[Ans. (d) All the above are correct]
73. Which formula of a compound is a whole number multiple of the empirical formula?
(a) matter
(b) mass
(c) energy
(d) weight
[Ans. (a) matter]
74. All oxidation reactions are accompanied by \qquad reactions.
(a) accession
(b) addition
(c) reduction
(d) decomposition
[Ans. (c) reduction]
75. During which reactions the oxidation number of elements changes?
(a) metabolic reactions
(b) reduction reactions
(c) exchange reactions
(d) redox reactions
[Ans. (d) redox reactions]
76. An ion in a compound is replaced by an ion of another element are called \qquad reactions.
(a) displacement
(b) ionic
(c) chemical
(d) physical
[Ans. (a) displacement]

Additional Short Answers

1. Mixture of salt and water is a solution while that of oil and water is not. Explain.
Ans. Solution is a homogeneous mixture of two or more components. Salt in water is homogeneous and therefore it is a solution. Whereas oil in water is heterogeneous or immiscible mixture and so is not a solution.
2. Why is air sometimes considered as a heterogeneous mixture?
Ans. Air sometimes considered as a heterogeneous mixture due to the presence of dust particles which form a separate phase.

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
3. By applying the knowledge of chemical classification, classify each of the following into elements, compounds or mixtures.
(i) Sugar
(ii) Sea water
(iii) Distilled water
(iv) Carbon dioxide
(v) Copper wire
(vi) Table salt
(vii) Silver plate
(viii) Naphthalene balls

Ans.

Element	Compound	Mixture
Copper wire (cu)	Sugar	Sea water
Silver plate (Ag)	distilled water carbon dioxide Table salt Naphthalene balls	

4. Matter is defined as anything that has mass and occupies space. All matter is composed of atoms.
Ans.

5. Define stoichiometry.

Ans. Stoichiometry is the quantitative relationship between reactants and products in a balanced chemical equation in moles.
6. List the differences between elements and compounds. Ans.

ELEMENTS	COMPOUNDS	
(i)	An element consists of only one type of atom.	Compounds are made up of molecules which contain two or more atoms of different elements.
(ii)	Element can exist as monatomic or polyatomic units. The polyatomic elements are called molecules.	Properties of compounds are different from those of their constituent elements.
(iii)	Eg : Monatomic unit - Gold $($ Au $)$,	Eg : Carbon dioxide $\left(\mathrm{CO}_{2}\right)$, Copper $(\mathrm{Cu}) ;$ Polyatomic unit - Hydrogen $\left(\mathrm{H}_{2}\right)$

7. Write a note on 'mixture' based on the chemical classification of matter.
Ans. Two or more substances mix together in any ratio without any chemical intraction is called mixture.
(i) Homogeneous mixture :

A mixture having uniform composition throughout is called homogeneous mixture. Eg : salt solution, air etc.,
(ii) Heterogeneous mixture :

A mixture in which the composition is not uniform throughout and different components can be observed is called heterogeneous mixture. Eg : Mixture of salt and sugar, cereals and pulse etc.,
8. How will you classify matter based on physical state?

Ans. Physical Classification of Matter : Matter can be classified as solids, liquids and gases based on their physical state. The physical state of matter can be converted into one another by modifying the temperature and pressure suitably.
9. Explain the classification of matter based on chemical composition.
Ans. Chemical Classification : Pure substances are composed of simple atoms or molecules. They are further classified as elements and compounds.
(a) Element:

- An element consists of only one type of atom.
- Element can exist as monatomic or polyatomic units. The polyatomic elements are called molecules.
- Eg : Monatomic unit - Gold (Au), Copper (Cu); Polyatomic unit - Hydrogen $\left(\mathrm{H}_{2}\right)$
(b) Compound :
- Compounds are made up of molecules which contain two or more atoms of different elements.
- Eg : Carbon dioxide $\left(\mathrm{CO}_{2}\right)$, Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$.

10. Define Avogadro number.

Ans. The total number of entities present in one mole of any substance is equal to 6.022×10^{23}. This number is called Avogadro number.
11. Define molar volume.

Ans. The volume occupied by one mole of any substance in the gaseous state at a given temperature and pressure is called molar volume. One mole of an Ideal gas is equal to $22.4 \mathrm{~L}(\mathrm{Or}) 22400 \mathrm{ml}$ at STP conditions.
12. Which law co-relates the mass and volume of a gas?

Ans. Avogadro’s law. It states equal volume of all gases under the same conditions of temperature and pressure contain equal number of molecules.
13. Does one gram mole of a gas occupy 22.4 L under all conditions of temperature and pressure.
Ans. No, one gram mole of a gas occupies 22.4 L only under STP conditions, i.e. at 273 K temperature and 760 mm of pressure. $\left(1.0315 \times 10^{15} \mathrm{~Pa}\right)$
14. Bring about the dissimilarities in mole concept and molar mass by clearly analysing them.
Ans.

Mole	Molar Mass
1. It is defined as the	
amount of the substance	
that contains as many	
specified elementary	
particles as the number	
of atoms in 12 g of C^{12}.	

of one mole of the

substance.\end{array}\right\}\)| 2. 1 mole $=6.023 \times 10^{23}$ |
| ---: |
| particles | | Molar mass |
| ---: |
| $=\frac{\text { Mass }}{\mathrm{mol}} \mathrm{g} \mathrm{mol}^{-1}$ |

15. State Avogadro's hypothesis.

Ans. Equal volume of all gases under the same conditions of temperature and pressure contain equal number of molecules.
16. (i) If an acid is mono basic, how will you relate their equivalent mass and molecular mass.
(ii) What is the basicity of $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$?
(iii) Give any two examples for dibasic acids.

Ans. (i) If an acid is mono basic, then its equivalent mass $=$ Molecular mass.
(ii) Basicity of $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ is 4 (Tetrabasic acid)
(iii) Examples of dibasic acid are $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$.
17. Why are the atomic mass of most of the elements fractional?
Ans. It is because most of the elements occur in nature as a mixture of isotopes and their atomic masses are the average relative atomic masses of the isotopes depending in their abundance.
18. Write down the formulae for calculating the equivalent mass of an acid, base and oxidising agent.
Ans. (i) Equivalent Mass of Acids:

$$
\mathrm{E}=\frac{\text { Molar mass of the acid }}{\text { Basicity of the acid }}
$$

(ii) Equivalent Mass of Bases:

$$
\mathrm{E}=\frac{\text { Molar mass of the base }}{\text { Acidity of the base }}
$$

(iii) Equivalent Mass of Oxidising agent :

$$
\mathrm{E}=\frac{\text { Molar mass of the oxidising agent }}{\text { no. of moles of electrons gained }}
$$

19. What do you understand by stoichiometric coefficients in a chemical equation?
Ans. The co-efficients of reactants and products involved in a chemical equation represented by the balanced form are known as stoichiometric co-efficients.
$\mathrm{Eg}: \mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \longrightarrow 2 \mathrm{NH}_{3(g)}$
The stoichiometric co-efficients are 1, 3 and 2 respectively.
20. Write the simplest formula for the following.
(i) $\mathrm{N}_{2} \mathrm{O}_{4}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(iii) $\mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{H}_{2} \mathrm{O}_{2}$

Ans. (i) NO_{2}
(ii) $\mathrm{CH}_{2} \mathrm{O}$
(iii) $\mathrm{H}_{2} \mathrm{O}$
(iv) HO .
21. Categorise the redox reactions that occur in our daily life.
Ans. Fading of the colour of the clothes

- Burning of cooking gas, fuel, wood, etc.
- Rusting of Iron
- Extraction of Metals.

22. $2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
(i) In this reaction which substance is getting oxidised and which substance is getting reduced?
(ii) Name the oxidising and reducing agents.

Ans. (i) Oxygen is being added to Cu , (ie.,) $\mathrm{Cu}_{2} \mathrm{~S}$ is oxidised to $\mathrm{Cu}_{2} \mathrm{O}$ and the other reactant O_{2} is getting reduced.
(ii) $\mathrm{Cu}_{2} \mathrm{~S}$ is the a reducing agent. O_{2} is an oxidising agent.
23. How would you know whether a redox reaction is taking place in an acidic, alkaline or neutral medium.
Ans. \square If H^{+}any acid appears on either side of the chemical equation, the reaction occurs in acidic solution.

- If OH^{-}or any base appears on either side of the chemical equation, the reaction occurs in basic solution.
- If neither $\mathrm{H}^{+}, \mathrm{OH}^{-}$nor any acid or base is present in the chemical equation, the solution is neutral.

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
24. Zn rod is immersed in CuSO_{4} solution. What will you observe after an hour? Explain you observation in terms of redox reaction.
Ans. \square The blue colour of CuSO_{4} solution will get discharged and reddish brown copper metal will be deposited on Zn rod.

- This is because blue colour Cu^{2+} (in CuSO_{4}) gets reduced to Cu by accepting two electrons from Zn , which gets oxidised to colourless ZnSO_{4}.

25. What is molar Volume?

Ans. Molar volume is the volume occupied by one mole of any substance in the gaseous state at STP. It is equal to $2.24 \times 10^{-2} \mathrm{~m}^{3}(22.4 \mathrm{~L})$
26. What will be oxidation number of sulphur in $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$ ion and $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$ ion?
[HOTS]
Ans. (i) In $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$, there is one peroxide bond (-O-O-) therefore, two oxygen atoms having oxidation number -1 (i.e., O_{2}^{2-}) and for the other six oxygen atoms, the oxidation number is -2 .
$\mathrm{S}_{2} \mathrm{O}_{8}^{2-}=2 x+(-2 \times 6)+(-1 \times 2)=-2$
$2 x=+12 \Rightarrow x=+6$
(ii) In $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$, two

S-atoms have oxidation state +5
 while another two S -atoms have 0 oxidation state.
27. Nitric acid is an oxidising agent and reacts with PbO but it does not react with PbO_{2}. Explain why?
[HOTS]
Ans. (i) Nitric acid in an oxidising agent. It oxidises an element from lower oxidation state to higher oxidation state. In PbO , lead is in lower oxidation state of $+2 . \mathrm{HNO}_{3}$ oxidises lead from Pb^{2+} to Pb^{4+} $\mathrm{PbO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
(ii) In PbO_{2}, lead is in +4 oxidation state and cannot be oxidised further. Therefore no reaction takes place.
28. Which one of the two, ClO_{2}^{-}or ClO_{4}^{-}shows disproportionation reaction and why?
[HOTS]
Sol : The oxidation state of Cl in ClO_{2}^{-}is +3 . So, chlorine can get oxidised as well as reduced and can act as reductant and oxidant.

The disproportionation reaction of ClO_{2}^{-}is

$$
3 \stackrel{+1}{\mathrm{ClO}_{2}^{-}} \longrightarrow \mathrm{Cl}^{-}+\stackrel{+5}{\mathrm{ClO}_{3}^{-}}
$$

In $\mathrm{ClO}_{4}^{-}, \mathrm{Cl}$ is in its highest oxidation state, So it can only be an oxidant.
29. Identify the type of redox reaction taking place in the following.
(i) $\quad \mathbf{3} \mathbf{M g}_{(s)}^{0}+\mathbf{N}_{\mathbf{2 (g)}}^{\mathbf{0}} \longrightarrow \mathbf{M g}_{3}^{+2} \mathbf{N}_{2(s)}^{-3}$

(iii) $2{\stackrel{+1+5}{\mathrm{~K}} \mathrm{ClO}_{\mathbf{O}}^{-2}}_{\mathbf{3 (s)}} \longrightarrow \mathbf{2}^{+1}{ }^{-1} \mathbf{C l}_{(s)}+\mathbf{3 0}_{\mathbf{O}}^{2(g)}$

(v) $\mathrm{Br}_{2(\mathrm{l})}+2 \mathrm{I}_{\text {(aq) }} \longrightarrow 2 \mathrm{Br}_{(\text {aq })}^{-}+\mathrm{I}_{2(\mathrm{~s})}$
(vi) $\stackrel{0}{\mathrm{C}}_{\mathbf{2}(\mathrm{g})}+2 \mathrm{OH}_{(\text {(aq) }}^{-} \longrightarrow \stackrel{-1}{\mathrm{Cl}}_{(a q)}^{-}+{\stackrel{-1}{\mathrm{C}} \mathrm{l}_{(a q)}^{-}}_{-}^{\mathrm{H}_{2} \mathrm{O}_{(l)}}$

Ans. (i) Combination reaction
(ii) Displacement reaction
(iii) Decomposition reaction
(iv) Metal displacement reaction
(v) Non-metal displacement reaction
(vi) Disproportionation reaction.
30. How can we say sugar has solid and water has liquid?

Ans. When a sugar dissolves into tea or coffee, the liquid transforms the sugar into a liquid. So it can fit in with the liquid and slide in with the molecules. If you try to evaporate the water for long enough, you will turn the sugar back into a solid.
31. Define Average atomic mass?

Ans. Average atomic mass is defined as the average atomic mass of all atoms in their naturally occurring isotopes.

Examples:

Chlorine consist of chlorine isotope ${ }_{17} \mathrm{Cl}^{35}$ and ${ }_{17} \mathrm{Cl}^{37}$ are in the ratio 77:23, the average atomic mass of chlorine $A\left(-\right.$ is bar) is equal to $A_{1} X_{1}+A_{2} X_{2} / X_{1}+X_{2}$ is equal to $35 \times 77+37 \times 23 / 100$ is equal to 35.46 u .
32. State Avogadro's Hypothesis.

Ans. It states that "Equal volume of all gases under the same conditions of temperature and pressure contain equal number of molecules."
33. The approximate production of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ per month is $424 \times 10^{6} \mathrm{~g}$ while that of methyl alcohol is $320 \times$ $10^{6} \mathrm{~g}$. Which is produced more in terms of moles?
Ans.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3} \text { mass }=424 \times 10^{6} \mathrm{~g}
$$

$$
\begin{align*}
\text { Molecular mass of } \mathrm{Na}_{2} \mathrm{CO}_{3} & =(23 \times 2)+12+(16 \tag{16+3}\\
& =46+12+18 \\
& =106 \mathrm{~g}
\end{align*}
$$

No. of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\text { Mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}}{\text { molecular mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}}$

$$
\begin{aligned}
& =\frac{424 \times 10^{6} \mathrm{~g}}{106 \mathrm{~g}} \\
& =4 \times 10^{6} \mathrm{moles}
\end{aligned}
$$

Methyl alcohol mass $=320 \times 10^{6} \mathrm{~g}$
34. How many moles of glucose and present in 720 g of glucose?
Ans. Glucose $=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ Molecular mass $=(12 \times 6)+(1 \times 12)+(16 \times 6)$ of glucose

$$
=72+12+96=180
$$

$\begin{aligned} & \text { Number of mole } \\ & \text { of glucose }\end{aligned}=\frac{\text { Mass of glucose }}{\text { Molecular mass of glucose }}$

$$
=\frac{720}{180}=4 \text { moles } .
$$

35. What do you understand by the terms acidity and Basicity?
Ans. Acidity : The number of hydroxyl ions present in one mole of a base is known as the acidity of the base.
Basicity : The number of replaceable hydrogen atoms present in a molecule of the acid is referred to as its basicity.
36. What is meant by plasma state? Give an example.

Ans. Gaseous state of matter at very high temperature containing gaseous ions and free electron is referred to as the plasma state eg., Lightning.
37. What is meant by limiting agend?

Ans. A large excess of one reactant is supplied to ensure the more expensive reactant is completely converted to the desired product. The reactant use up first in a reaction is called the limiting reagent.
38. What is decomposition reaction? Give 2 example.

Ans. Chemical reactions in which a compound splits up into tow or more simpler substances are called decomposition reaction.

$$
\begin{gathered}
\mathrm{AB} \longrightarrow \mathrm{~A}+\mathrm{B} \\
\mathrm{Ex}-2 \mathrm{KCl} \mathrm{O}_{3} \longrightarrow \mathrm{KCl}_{3}+\mathrm{Cl}_{2} \\
\mathrm{PCl}_{5} \longrightarrow \mathrm{PCl}_{2}+3
\end{gathered}
$$

39. What is displacement reactions? Give its types. Explain with example.
Ans. The reaction in which one ion or atom in a compound is replaced by an ion or atom of the other element are called displacement reactions.

40. What are competive electron transfer reaction? Give example.
Ans. These are the reaction in which redox reactions take place in different vessels and it is an indirect redox reaction. There is a competition for the release of electrons among different metals.
$\mathrm{Eg}: \mathrm{Zn}$ releases electrons to Cu and Cu releases electrons to silver and SO on

$$
\begin{aligned}
& \mathrm{Zn}_{(\mathrm{s})}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Cu}_{(\mathrm{s})} \\
& \text { (Here } \mathrm{Zn} \text { oxidised } \mathrm{Cu}^{2+} \text { - reduced) } \\
& \mathrm{Cu}_{(\mathrm{s})}+2 \mathrm{Ag}^{+} \longrightarrow \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Ag}_{(\mathrm{g})}
\end{aligned}
$$

(Here Cu oxidised Ag^{+}- reduced)
41. What is disproportionation reaction? Give example.
Ans. The reaction in which an element undergoes simultaneously both oxidation and reduction are called as disproportional reactions.
Ex: $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$ $2 \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOOH}$
42. Draw a flow chart to illustrate classification of matter.

Ans.

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
43. An organic compound present in vinegar has 40% carbon, 6.6% hydrogen and 53.4% oxygen. Find the empirical formula of the compound.
Ans.

Element	Percentage	Atomic mass	Relative No. of moles	Simple ratio mole	Simplest ratio (in whole no)
C	40	12	$\frac{40}{12}=3.3$	$\frac{3.3}{3.3}=1$	1
H	6.6	1	$\frac{6.6}{1}=6.6$	$\frac{6.6}{3.3}=2$	2
O	53.4	16	$\frac{53.4}{16}=3.3$	$\frac{3.3}{3.3}=1$	1

The Empirical formula is $\mathrm{CH}_{2} \mathrm{O}$.
44. Discuss the characteristic the properties of physical classification of matter.
[LOTS]
Ans.

S.No	PROPERTIES	SOLID	LIQUID	GAS
1.	Volume	definite	definite	indefinite
2.	Shape	definite	indefinite	indefinite
3.	Compressibility	cannot be compressed	can be compressed	can be highly compressed
4.	Arrangement of molecules	regular and close to each other	random or irregular but almost close to each other.	random and wide apart
5.	Bonding	strong intermolecular bonds	relatively strong intermolecular bonds; slightly weaker than solid	very weak intermolecular bonds.
$\mathbf{6 .}$	Fluidity	cannot flow	can flow from higher to lower level	can flow in all directions
	Example	Ice	Water	Water vapour

Additional Long Answers

1. What is the condition for molar Volume?

Ans. The molar volume of any ideal gas at 273 degree kelvin and 1 atm pressure is equal to 22.4 L (or) 22400 ml .
Ideal gas equation is PV is equal to nRT
where P is pressure at 1 atm . and temperature 273 degree kelvin is called Standard Temperature and Pressure.
R is the gas constant and is equal to $0.082 \mathrm{dtm}^{3}$. atm. $\mathrm{k}^{-1} \cdot \mathrm{~mol}^{-1}$.
Hence V is equal to $n R T / P$.
V is equal to 22.4 L .
2. Define auto-oxidation (disproportination) reaction and its examples.
Ans. Displacement reaction : Redox reactions in which an ion (or an atom) in a compound is replaced by an ion (or atom) of another element are called displacement reactions. They are further classified into (i)
 metal displacement reactions (ii) non-metal displacement reactions.
(i) Metal displacement reactions :

- Place a zinc metal strip in an aqueous copper sulphate solution taken in a beaker. Observe the solution, the intensity of blue colour of the solution slowly reduced and finally disappeared.
- The zinc metal strip became coated with brownish metallic copper. This is due to the following metal displacement reaction.

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores

(ii) Non-metal displacement :

Oxidation

3. Write any three rules assigning for the oxidation number?
Ans. \square The oxidation state of a free elements (i.e. in its uncombined state) is zero.
Example : each atom in $\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{Na}, \mathrm{S}_{8}$ have the oxidation number of zero.

- For a monatomic ion, the oxidation state is equal to the net charge on the ion.
Example : The oxidation number of sodium in Na^{+}is +1 .
The oxidation number of chlorine in Cl^{-}is -1 .
- The algebric sum of oxidation states of all atoms in a molecule is equal to zero, while in ions, it is equal to the net charge on the ion.

4. Distinguish between the following.
(i) Atomic and molecular mass
(ii) Atomic mass and atomic weight
(iii) Empirical and molecular formula
(iv) Moles and molecules.

Ans.

(i)	Atomic Mass	Molecular Mass
	Atomic mass is the mass of a single atom, which is its collective mass of neutron, proton and electrons.	Molecular weight is the mass of one molecule. Molecular mass can be calculated from the sum of atomic masses of all atoms present in a compound.
(ii)	Atomic Mass	Atomic Weight

NUMERICAL PROBLEMS

1. Calculate the number of atoms in each of the following.
(i) 52 g of He and (ii) 52 moles of He .

Ans. (i) 1 mol of $\mathrm{He} \equiv 4 \mathrm{~g} \equiv 6.022 \times 10^{23} \mathrm{He}$ atoms (ie) 4 g of He contains $6.022 \times 10^{23} \mathrm{He}$ atoms
$\therefore 52 \mathrm{~g}$ of He contains $=\frac{6.023 \times 10^{23} \times 52}{4}$

$$
=7.83 \times 10^{24}
$$

52g of He contains $7.83 \times 10^{24} \mathrm{He}$ atoms.
(ii) 1 mol of He contains $6.023 \times 10^{23} \mathrm{He}$ atoms

$$
\begin{aligned}
\therefore 52 \text { moles of He contains } & =\frac{6.023 \times 10^{23} \times 52}{1} \\
& =3.132 \times 10^{25}
\end{aligned}
$$

52 moles of He contains $3.132 \times 10^{25} \mathrm{He}$ atoms.
2. Calculate the mass of the following :
(i) 1 atom of silver (ii) 1 molecule of benzene
(iii) 1 molecule of water.

Ans. (i) Molecular mass of silver (Ag) $=107.87 \mathrm{u}$
Molar mass of Ag $\quad=107.87 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Mass of 1 atom of Ag $=\frac{\text { Molar mass }}{\text { Avogadro's number }}$

$$
=\frac{107.87 \mathrm{~g} \mathrm{~mol}^{-1}}{6.023 \times 10^{23} \mathrm{~mol}^{-1}}
$$

$$
=17.91 \times 10^{-23} \mathrm{~g} .
$$

Mass of 1 atom of $\mathrm{Ag}=17.91 \times 10^{-23} \mathrm{~g}$.
(ii) Molecular mass of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=$
$(6 \times 12.01 u)+(6 \times 1 u)=78.06 u$
Molar mass of benzene $=78.06 \mathrm{~g} \mathrm{~mol}^{-1}$
Then, mass of 1 molecule of benzene

$$
\begin{aligned}
& =\frac{\text { Molar mass of benzene }}{\text { Avogadro's number }} \\
& =\frac{78.06 \mathrm{~g} \mathrm{~mol}^{-1}}{6.023 \times 10^{23} \mathrm{~mol}^{-1}}=12.96 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

Mass of 1 molecule of benzene $=12.94 \times 10^{-23} \mathrm{~g}$.
(iii) Molecular mass of water $=(2 \times 1 \mathrm{u})+(1 \times 16 \mathrm{u})$

$$
=18 \mathrm{u}
$$

Molar mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 1 molecule of water

$$
=\frac{\text { Molar mass of water }}{\text { Avogadro's number }}
$$

$$
=\frac{18 \mathrm{~g} \mathrm{~mol}^{-1}}{6.023 \times 10^{23} \mathrm{~mol}^{-1}}=2.99 \times 10-23 \mathrm{~g}
$$

Mass of 1 molecule of water $=2.99 \times 10^{-23} \mathrm{~g}$.
3. One million silver atoms weigh $1.79 \times 10^{-16} \mathrm{~g}$. Calculate the atomic mass of silver.
Ans. No. of silver atoms $=1$ million $=1 \times 10^{6}$
Mass of one million Ag atoms $=1.79 \times 10^{-16} \mathrm{~g}$
Mass of 6.023×10^{23} atoms of silver

$$
\begin{aligned}
& =\quad \frac{1.79 \times 10^{-16} \mathrm{~g}}{1 \times 10^{6}} \times 6.023 \times 10^{23} \\
& =\quad 107.8 \mathrm{~g} .
\end{aligned}
$$

Atomic mass of silver $=6.023 \times 10^{23}$ atoms of Ag \therefore The atomic mass of $\mathrm{Ag}=107.8 \mathrm{~g}$.
4. How much mass (in gram units) is represented by the following?
(i) 0.2 mol of NH_{3}
(ii) 3.0 mol of CO_{2}
(iii) 5.14 mol of $\mathrm{H}_{5} \mathrm{IO}_{6}$

Ans. (a) Molar mass of $\mathrm{NH}_{3}=(1 \times 14+3 \times 1)=17 \mathrm{~g} \mathrm{~mol}^{-1}$ Mass of 0.2 mol of $\mathrm{NH}_{3}=0.2 \mathrm{~mol} \times 17 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
=3.4 \mathrm{~g}
$$

(b) Molar mass of $\mathrm{CO}_{2}=(1 \times 12+2 \times 16)$

$$
=44 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Mass of 3 moles of $\mathrm{CO}_{2}=3 \mathrm{~mol} \times 44 \mathrm{~g} \mathrm{~mol}^{-1}$
$=132 \mathrm{~g}$
(c) Molar mass of $\mathrm{H}_{5} \mathrm{IO}_{6}=(5 \times 1+1 \times 127+6 \times 16)$

$$
=228 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Mass of $5.14 \mathrm{molofH}_{5} \mathrm{IO}_{6}=5.14 \mathrm{~mol} \times 228 \mathrm{gmol}^{-1}$

$$
=1171.9 \mathrm{~g} .
$$

5. What mass of \mathbf{N}_{2} will be required to produce 34 g of NH_{3} by the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$.
Ans. The reaction is

Thus, to produce 34.0 g ammonia, 28 g of N_{2} is required.
6. Calculate the Formula Weights of the following compounds.
(a) NO_{2} (b) Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
(c) NaOH
(d) $\mathrm{Mg}(\mathrm{OH})_{2}$

Ans. (a) NO_{2}
$1 \times$ AW of $\mathrm{N}=1 \times 14=14 \mathrm{amu}$
$2 \times \mathrm{AW}$ of $\mathrm{O}=2 \times 16=32 \mathrm{amu}$
Formula weight of $\mathrm{NO}_{2}=46 \mathrm{amu}$
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ - Glucose $6 \times \mathrm{AW}$ of $\mathrm{C}=6 \times 12.01=72.06 \mathrm{amu}$ $12 \times$ AW of $\mathrm{H}=12 \times 1.008=12.096 \mathrm{amu}$ $6 \times \mathrm{AW}$ of $\mathrm{O}=6 \times 16=96.0 \mathrm{amu}$
Formula weight of Glucose is $=180.156 \mathrm{amu}$
Formula weight of Glucose is $=\mathbf{1 8 0} \mathrm{amu}$
(c) NaOH
$1 \times \mathrm{AW}$ of $\mathrm{Na}=1 \times 22.99=22.99 \mathrm{amu}$
$1 \times \mathrm{AW}$ of $\mathrm{O}=1 \times 16=16.00 \mathrm{amu}$
$1 \times \mathrm{AW}$ of $\mathrm{H}=1 \times 1.008=1.008 \mathrm{amu}$
Formula weight of NaOH is $=39.998 \mathrm{amu}$
Formula weight of NaOH is $=40 \mathrm{amu}$.
(d) $\mathbf{M g}(\mathrm{OH})_{2}$
$1 \times \mathrm{AW}$ of $\mathrm{Mg}=1 \times 24.305=24.305 \mathrm{amu}$
$2 \times \mathrm{AW}$ of $\mathrm{O}=2 \times 16=32.000 \mathrm{amu}$
$2 \times \mathrm{AW}$ of $\mathrm{H}=2 \times 1.008=2.016 \mathrm{amu}$ Formula weight of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $=58.321 \mathrm{amu}$ Formula weight of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $=58 \mathrm{amu}$.
7. Calculate the equivalent weight of $\mathbf{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$ on the basis of given reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HCl} \longrightarrow \mathrm{Ca}(\mathrm{OH}) \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
Sol : Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
=\frac{\text { Molecular mass }}{\text { No. of replaceable } \mathrm{H}^{+}}=\frac{98}{1}=98
$$

Equivalent weight of $\mathrm{Ca}(\mathrm{OH})_{2}$

$$
=\frac{\text { Molecular mass }}{\text { No. of replacement } \mathrm{OH}^{-}}=\frac{74}{1}=74
$$

8. (i) Calculate the gram molecular mass of sugar having molecular formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.
(ii) Calculate (a) The mass of 0.5 g molecule of sugar and (b) Gram molecule of sugar in 547.2 g.

Ans. (i) Molecular mass of Sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$

$$
=12 \times 12+22 \times 1+11 \times 16=342
$$

(ii) (a) 1 gram molecule of sugar $=342 \mathrm{~g}$

$$
\therefore 0.5 \mathrm{~g} \text { molecule of sugar }=342 \times 0.5
$$

$$
=171 \mathrm{~g}
$$

(b) 342 g of sugar $=1$ gram molecule
547.2 of sugar $=\frac{1}{342} \times 547.2=1.6$ gram molecule. 9. Calculate the number of moles in the following.
(i) 7.85 g of copper (ii) 4.66 mg of silicon
(iii) 65.6 mg of oxygen.

Sol : (i) Moles of copper $=\frac{\text { Mass of copper }}{\text { atomic mass }}$

$$
=\frac{7.85}{63.546}=0.123 \mathrm{~mol}
$$

(ii) Moles of silicon $=\frac{\text { Mass of silicon }}{\text { atomic mass }}$

$$
\begin{aligned}
& =\frac{4.66 \times 10^{-3}}{28.1} \\
& =1.658 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

(iii) Moles of oxygen $=\frac{\text { Mass of oxygen }}{\text { atomic mass }}$

$$
\begin{aligned}
& =\frac{65.6 \times 10^{-6}}{16} \\
& =4.1 \times 10^{-6} \mathrm{~mol}
\end{aligned}
$$

10. What will be the molecular formula for the compound, whose empirical formula is $\mathrm{CH}_{2} \mathrm{Cl}$ and molar mass is $\mathbf{9 8 . 9 6} \mathbf{g}$?
Sol : Empirical formula $=\mathrm{CH}_{2} \mathrm{Cl}$;
Empirical formula mass $=12.01+2 \times 1.008+35.453$

$$
=49.48 \mathrm{~g}
$$

$$
n=\frac{\text { molecular mass }}{\text { empirical formula mass }}
$$

$$
=\frac{98.96 g}{49.48 g}=2(n)
$$

$$
\text { Molecular formula }=n \times \text { Empirical formula }
$$

$$
=2 \times \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}
$$

11. Calculate the oxidation number of nitrogen in nitrous acid and nitric acid
Ans. (i) Nitrous acid : HNO_{2}
$+1+x-2 \times 2=0$

$$
x=+3
$$

(ii) Nitric acid: HNO_{3}

$$
+1+x-2 \times 3=0
$$

$$
x=+5
$$

12. Balance the following reaction by oxidation number method.
Ans. $\mathrm{MnO}_{4}^{-1}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{S}$ (Acidic Medium)
(i) Write oxidation number of elements

$$
\underset{\substack{\mathrm{MnO}_{4}^{-1} \\
(+7)(-2)}}{\mathrm{M}_{(}} \underset{(+1)(-2)}{\mathrm{H}_{2} \mathrm{~S}} \longrightarrow \mathrm{Mn}^{2+}+\begin{aligned}
& \mathrm{S} \\
& +2
\end{aligned}
$$

(ii) Balance the number of atoms of the elements in which oxidation number changes

$$
\underset{(+7)}{\mathrm{MnO}_{4}^{-1}}+\underset{(-2)}{\mathrm{H}_{2} \mathrm{~S}} \longrightarrow \underset{(+2)}{ } \longrightarrow \underset{0}{\mathrm{Mn}^{2+}}+\underset{\mathrm{S}}{\mathrm{~S}}
$$

(iii) Decide the oxidation and reduction reaction on the basis of difference of oxidation number.
Increase in oxidation number by 2(Oxidation)

Decrease in oxidation number by 5(Reduction)
(iv) On multiplying oxidation reaction by 5 and reduction reaction by 2 to balance the change in oxidation number.

$$
2 \mathrm{MnO}_{4}^{-1}+5 \mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}
$$

(v) Balance the electric charge and atoms which do not change in oxidation number (spectators).

$$
\begin{aligned}
2 \mathrm{MnO}_{4}^{-1}+5 \mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+} & \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}+8 \mathrm{H}_{2} \mathrm{O} \\
2(-\mathrm{l}) 5(0)+6(+\mathrm{l}) & =2(+2)+5(0)+8(0) \\
-2+6 & =+4 \\
+4 & =+4
\end{aligned}
$$

In the above reaction the reactants and products are balanced in terms of electric charge and mass equivalence.
13. A compound on analysis was found to contain $\mathrm{C}=34.6 \% ; \mathrm{H}=3.85 \%$ and $\mathrm{O}=61.55 \%$. Calculate its empirical formula.
Ans.

Element	$\%$	$\frac{\text { Percentage mass }}{\text { At. mass }}$	Molar Ratio	Simplest Whole Number Ratio
C	34.6	$\frac{34.6}{12}=2.88$	$\frac{2.88}{2.88}=1$	3
H	3.85	$\frac{3.85}{1}=3.85$	$\frac{3.85}{2.88}=1.335$	4
O	61.55	$\frac{61.55}{16}=3.85$	$\frac{3.85}{2.88}=1.335$	4

The empirical formula of the compound $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$.
14. Calculate the mass of the atom in amu.

Ans. Oxygen
Mass of Oxygen atom $=2.656 \times 10^{-23}$
1 a.m.u (or) 1 u is equal to 1.66075 multiple
The mass of oxygen atom in amu

$$
=\frac{2.656 \cdot 10^{23}}{1.66075 \cdot 10^{24}} \approx 15.992 \text { a.m.u }
$$

15. How many moles of barium suphate is precipitated when 1 mole of aluminium sulphate reacts completely with barium chloride?
Ans. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{BaCl}_{2} \rightarrow 3 \mathrm{Ba} \mathrm{SO}+2 \mathrm{AlCl}_{3}$
When 1 mole of aluminium sulphate reacts with barium chloride, 3 moles of BaSO_{4} is precipitated.
16. Calculate the molecular mass of the following:
a) KMnO_{4}
b) Crystalline Oxalic acid
c) Methane

Ans. (a) KMnO_{4}
$1 \times$ atomic mass of $\mathrm{K}=1 \times 39=39$

$$
\mathrm{Mn}=1 \times 55=55
$$

$$
\mathrm{O}=4 \times 16=64
$$

$$
158
$$

\therefore Molecular mass of $\mathrm{KMnO}_{4}=158$
(b) Crystalline Oxalic acid

COOH
${ }_{\mathrm{COOH}}{ }^{.2 \mathrm{H}_{2} \mathrm{O}}$

$$
\begin{aligned}
& \mathrm{C} \rightarrow 2 \times 12=24 \\
& \mathrm{O} \rightarrow 4 \times 16=64 \\
& \mathrm{H} \quad=\frac{2}{90} \\
& 4 \times 1=\frac{4}{4} \\
& 2 \times 16=\underline{32} \\
& \underline{126}
\end{aligned}
$$

\therefore Molecular mass of oxalic acid $=126$
(c) Methane $\mathbf{C H}_{4}$

$$
\begin{aligned}
\mathrm{C} \rightarrow 1 \times 12 & =12 \\
\mathrm{H} \rightarrow 4 \times 1 & =\frac{4}{16}
\end{aligned}
$$

\therefore Molecular mass of $\mathrm{CH}_{4}=16$
17. Calculate the number of atoms/molecules present in the following:
a) 10 g of Hg
b) 1.8 g of water
c) 100 g of sulpurdioxide
d) 1 kg of acetic acid

Ans. (a) $\mathbf{1 0 g}$ of Hg

$$
\text { Atomic mass of } \mathrm{Hg}=200 \mathrm{~g} \mathrm{~mol}^{-1}
$$

200 g of mercury contains 6.023×10^{23} atoms of mercury.

$$
\begin{aligned}
10 \mathrm{~g} \text { of mercury contains }= & \frac{10 \times 6.023 \times 10^{23}}{200} \\
= & 0.301 \times 10^{23} \\
& =3.01 \times 10^{24} \\
& \text { atoms of mercury. }
\end{aligned}
$$

(b) 1.8 g of water

1 mole of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$
18 g of water contains 6.023×10^{23} molecules of water

$$
\begin{aligned}
1.8 \mathrm{~g} \text { of water contains } & =\frac{1.8 \times 6.023 \times 10^{23}}{18} \\
& =0.602 \times 10^{23} \\
& =6.02 \times 10^{24} \\
& \text { Molecules of water }
\end{aligned}
$$

(c) 100 g of sulphur dioxide

Molecular mass of $\mathrm{SO}_{2}=64$
64 g of sulphur dioxide contains $=6.023 \times 10^{23}$
Molecules of SO_{2}
$\therefore 100 \mathrm{~g}$ of SO_{2} contains $=\frac{100 \times 6.023 \times 10^{23}}{64}$

$$
=9.41
$$

molecules of SO_{2}
(d) 1 Kg of acetic acid

Molecular mass of acetic acid $=60$
60 g of acetic acid contains $=6.023 \times 10^{23}$
Molecules of acetic acid
$\therefore 1000 \mathrm{~g}$ of acetic acid contains

$$
\begin{gathered}
=\frac{1000 \times 6.023 \times 10}{60} \\
=100 \times 10^{23} \\
\text { molecules of acetic acid }
\end{gathered}
$$

18. Calculate the number of moles present in the following:
a) 50 g of calcium chloride
b) 120 g of sodium hydroxide
c) 46 g of ethanol
d) 90 g of magnesium oxide
e) 19.5 g of potassium

Ans. (a) 50 g of calcium chloride
Molar mass of calcium chloride $=111$
No. of moles $=\frac{\text { Mass }}{\text { Molar mass }}$
No. of moles $=\frac{50}{111}=0.450$ moles
(b) 120 g of sodium hydroxide

Molar mass of sodium hydroxide $=40$

$$
\begin{aligned}
\text { No. of moles } & =\frac{\text { Mass }}{\text { Molar mass }} \\
\text { No. of moles (n) } & =\frac{120}{40}=3 \text { moles }
\end{aligned}
$$

(c) 46 g of ethanol

Molecular mass of ethanol $=46$

$$
\text { No. of moles }=\frac{\text { Mass }}{\text { Molar mass }}
$$

$$
\text { No. of moles }(\mathrm{n})=\frac{46}{46}=1 \text { mole }
$$

(d) 90 g of magnesium oxide

Molecular mass of $\mathrm{MgO}=40$

$$
\begin{aligned}
\text { No. of moles } & =\frac{\text { Mass }}{\text { Molar mass }} \\
\text { No. of moles } & =\frac{90}{40}=2.25 \text { moles }
\end{aligned}
$$

(e) 19.5 g of potassium

Atomic mass of pottassium $=39$

$$
\begin{aligned}
\text { No. of moles } & =\frac{\text { Mass }}{\text { Molar mass }} \\
\text { No. of moles } & =\frac{19.5}{39}=0.5 \text { moles }
\end{aligned}
$$

19. Calculate the molar volume of the following:
a) 88 g of CO_{2}
b) 5 moles of methane
c) 460 g of formic acid
d) 3.0115×10^{23} molecules of SO_{2} gas

Ans. (a) 88 g of CO_{2}
Molar mass of $\mathrm{CO}_{2}=44 \mathrm{~g}$
Molar volume of 44 g (1mole) of CO_{2}

$$
=2.24 \times 10^{-2} \mathrm{~m}^{3}
$$

The volume of $88 \mathrm{~g}(2$ moles $)=\frac{2.24 \times 10^{-2} \times 88}{44}$

$$
=4.48 \times 10^{-2} \mathrm{~m}^{3}
$$

(b) 5 moles of methane

Molar mass of methane $=16 \mathrm{~g}$
Molar volume of 16 g (1mole) of methane

$$
=2.24 \times 10^{-2} \mathrm{~m}^{3}
$$

volume of 5 moles $(80 \mathrm{~g})$ of methane

$$
\begin{aligned}
& =\frac{2.24 \times 10^{-2} \times 80}{16} \\
& =11.2 \times 10^{-2} \mathrm{~m}^{3}
\end{aligned}
$$

(c) 460 g of formic acid

Molar mass of formic acid $=46 \mathrm{~g}$
Molar volume of 46 g (1mole) of formic acid

$$
=2.24 \times 10^{-2} \mathrm{~m}^{3}
$$

Molar volume of 460 g of (10 moles) of formic acid

$$
\begin{aligned}
& =\frac{2.24 \times 10^{-2} \times 460}{46} \\
& =22.4 \times 10^{-2} \mathrm{~m}^{3}
\end{aligned}
$$

(d) 3.0115×10^{23} molecules of SO_{2} gas

$$
6.023 \times 10^{23} \text { molecules }=1 \text { mole }
$$

$$
3.0115 \times 10^{23} \text { molecules }=\frac{1}{6.023 \times 10^{25}}
$$

$$
\times 3.0115 \times 10^{2 / 3}
$$

$$
=0.5 \text { moles }
$$

Molar volume of 1 mole of $\mathrm{SO}_{2}=2.24 \times 10^{-2} \mathrm{~m}^{3}$
Molar volume of 0.5 moles of SO_{2}

$$
\begin{aligned}
& =2.24 \times 10^{-2} \times 0.5 \\
& =1.12 \times 10^{-2} \mathrm{~m}^{3}
\end{aligned}
$$

20. Calculate the equivalent mass of the following
a) Zn
b) Nitrate ion
c) sodium

Ans. (a) Zn

$$
\begin{aligned}
\text { Equivalent mass } & =\frac{\text { Atomic mass }}{\text { Valency }} \\
& =\frac{65}{2}=32.5 \mathrm{~g} \mathrm{eq}^{-1}
\end{aligned}
$$

(b) Nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$

Equivalent mass of an ion $=\frac{\text { Formula mass }}{\text { Change of ion }}$
Equivalent mass of $\mathrm{NO}_{3}^{-}=\frac{62}{1}=62$
(c) Sodium

Equivalent mass $=\frac{\text { Atomic mass }}{\text { Valency }}$
Equivalent mass of sodium $=\frac{23}{1}=23$
21. 1.05 g of a metal gives on oxidation 1.5 g of its oxide. Calculate its equivalent mass.
Ans. Mass of oxygen $=1.5-1.05$

$$
=0.45 \mathrm{~g}
$$

0.45 g of oxygen combines with 1.05 g of metal.
$\therefore 8 \mathrm{~g}$ of oxygen combines with $\frac{8 \times 1.05}{0.45} \mathrm{~g}$ of metal
$=18.66 \mathrm{~g}$ of metal
\therefore equivalent mass of metal $=18.66 \mathrm{~g} \mathrm{equ}^{-1}$
22. Calculate equivalent mass of the following
a) Sodium hydroxide
b) Aluminium hydroxide
c) ammonium hydroxide
d) Calcium hydroxide
e) Magnesium hydroxide

Ans. (a) NaOH
NaOH
equivalent mass of $\mathrm{NaOH}=\frac{40}{1}=40$
(b) Aluminium hydroxide
equivalent mass of $\mathrm{Al}(\mathrm{OH})_{3}=\frac{78}{3}=26$
(c) Ammonium hydroxide
equivalent mass of $\mathrm{NH}_{4} \mathrm{OH}=\frac{35}{1}=35$
(d) Calcium hydroxide
equivalent mass of $\mathrm{Ca}(\mathrm{OH})_{2}=\frac{74}{2}=37$
(e) Magnesium hydroxide $\mathbf{M g}(\mathrm{OH})_{2}$ equivalent mass of Magnesium hydroxide $=\frac{58}{2}=29$
23. Calculate Equivalent mass of the following
a) Hydrochloric acid
b) Nitric acid
c) Acetic acid
d) Crystalline oxalic acid
e) Phosphorous acid

Ans. (a) Hydrochloric acid equivalent mass of an acid

$$
=\frac{\text { Molar mass of the acid }}{\text { Basicity of the acid }}
$$

$$
\text { Equivalent mass of } \begin{aligned}
\mathrm{HCl} & =\frac{36.5}{1} \\
& =36.5
\end{aligned}
$$

(b) Nitric acid Nitric acid
equivalent mass of $\mathrm{HNO}_{3}=\frac{\text { Molar mass }}{\text { basicity }}$
(c) Acetic acid $\left(\mathrm{CH}_{3} \mathbf{C O O H}\right)$

$$
=\frac{63}{1}=63
$$ equivalent mass of acetic acid $=\frac{\text { Molar mass }}{\text { basicity }}$

$$
=\frac{60}{1}=60
$$

(d) Crystalline oxalic acid
equivalent mass of oxalic acid $=\frac{\text { Molar mass }}{\text { basicity }}$

$$
\text { equivalent mass }=\frac{126}{2}=63
$$

(e) Phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ equivalent mass of phosphorous acid

$$
=\frac{\text { Molar mass }}{\text { basicity }}=\frac{82}{2}=41
$$

\therefore equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{3}=41$

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
24. 3.24 g of titanium reacts with oxygen to form 5.40 g of the metal oxide. Find the empirical formula of the metal oxide?
Ans. Weight of Titanium $=3.24 \mathrm{~g}$; Weight of metal oxide $=5.40 \mathrm{~g}$
Weight of Oxygen $=(5.40-3.24)=2.16 \mathrm{~g}$

Element	Percentage	Atomic mass	Relative No. of moles	Simple ratio mole	Simplest whole Number Ratio
Ti	3.24	48	$\frac{3.24}{48}=0.0675$	$\frac{0.067}{0.067}=1$	1
O	2.16	16	$\frac{2.16}{16}=0.135$	$\frac{0.135}{0.067}=2$	2

\therefore The empirical formula is TiO_{2}
25. A compound contains $11.99 \% \mathrm{~N}, 13.70 \% \mathrm{O}, 9.25 \% \mathrm{~B}$ and $\mathbf{6 5 . 0 6 \%}$ F. Find its empirical formula

Ans.

Element	Percentage	Atomic mass	Relative No. of moles	Simple ratio mole	Simplest whole Number Ratio
N	11.99	14	$\frac{11.99}{14}=0.856$	$\frac{0.856}{0.856}=1$	1
O	13.70	16	$\frac{13.70}{16}=0.856$	$\frac{0.856}{0.856}=1$	1
B	9.25	10	$\frac{9.25}{10}=0.925$	$\frac{0.925}{0.856}=1$	1
F	65.06	19	$\frac{65.06}{19}=3.424$	$\frac{3.424}{0.856}=4$	4

\therefore Empirical formula of the compound in NOBF_{4}
26. A organic compound used for welding operation contains the following composition by mass: $\mathrm{C}=\mathbf{9 2 . 3 \%}$, $\mathbf{H}=7.7 \%$. Find out the molecular formula of the compound. At STP, 10.0 L of this gas is found to weight 11.6 g .
Ans. Determination of Molecular formula

Element	Percentage	Atomic mass	Relative No. of moles	Simple ratio mole	Simplest whole Number Ratio
C	92.3	12	$\frac{92.3}{12}=7.7$	$\frac{7.7}{7.7}=1$	1
H	7.7	1	$\frac{7.7}{1}=7.7$	$\frac{7.7}{7.7}=1$	1

Empirical formula is CH
Molecular formula $=\mathrm{n} \times$ emprical formula
Emperical formula mass $(1 \times 12)+(1 \times 1) 12+1=13$
$\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}$
Molar mass $=\frac{\mathrm{wt} . \text { of the substance } \times \text { Molar volume }}{\text { vol.of the substance }}$ at STP

Molar volume at STP $=2.24 \times 10^{-2} \mathrm{~m}^{3}=22.4 \mathrm{l}=22400 \mathrm{ml}$
Molar mass of the gas at STP $=\frac{11.6 \times 22.4}{10}=25.9=26$
$\mathrm{n}=\frac{26}{13}=2$
Molecular formula $=n \times($ emp. formula $)=2 \times(\mathrm{CH})=\mathrm{C}_{2} \mathrm{H}_{2}$
27. The organic compound Vitamin- C , has the following composition by mass: $40.92 \% \mathrm{C}, 4.58 \% \mathrm{H}$, and the rest is oxygen. Determine its molecular formula. Molar mass of the substance is $176 \mathrm{~g} \mathrm{~mol}^{-1}$.
Ans.

Element	Percentage	Atomic mass	Relative No. of moles	Simple ratio mole	Simplest whole Number Ratio
C	40.92	12	$\frac{40.92}{14}=3.41$	$\frac{3.41}{3.406}=1.001$	3
H	4.58	1	$\frac{4.58}{1}=4.58$	$\frac{4.58}{3.406}=1.344$	4
O	$100-$ $[40.92+458]$	16	$\frac{54.5}{10}=3.406$	$\frac{3.406}{3.406}=1$	3

Empirical formula is $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
Empirical formula mass $=(12 \times 3)+(1 \times 4)+(3 \times 16)=36+4+48=88$
Molecular formula $=\mathrm{n} \times$ empirical formula
$\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{176}{88}=2$
$\mathrm{n}=2$
\therefore Molecular formula $=\mathrm{n} \times($ emp. formula $)=2 \times\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$

REDOX REACTION ACTIUITY

1. A piece of cut apple becomes brown. Why? Can you prevent it by a simple method?
Ans. Apple turns brown when cut since the surface is exposed to air and undergoes oxidation. It can be prevented by dipping sliced apples in lemon juice. Lemon juice is an antioxidant which takes in all the available oxygen and prevents it from reaching the apple's tissues.
2. Place an iron piece in a moist atmosphere and observe it after two days. Is there any deposition of new substance? Why does it happen? What is this phenomenon called?
Ans. When iron is exposed to moist air, the iron reacts with oxygen in the presence of moisture to from a reddish - brown chemical compound, iron - oxide. This phenonaenon is called rusting. A new substance Iron (III) oxide is formed. $4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+x \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(x+4) \mathrm{H}_{2} \mathrm{O}$
3. Calculate the oxidation number of underlined atoms of the following:
4. $\mathrm{K}_{2} \underline{\mathrm{MnO}}_{4}$
5. $\mathrm{K}_{2} \underline{\mathrm{CrO}}_{4}$
6. $\mathrm{NO}_{3}{ }^{-}$
7. $\mathrm{H}_{4} \underline{\mathrm{P}}_{2} \mathrm{O}_{7}$
8. ClO_{3}^{-}
9. $\mathrm{AsO}_{3}{ }^{3-}$

Ans. 1. $\quad \mathrm{K}_{2} \underline{\mathbf{M n O}}_{4}$ Oxidation number of Mn be x

$$
\begin{aligned}
2(1)+x+4(-2) & =0 \\
2+x-8 & =0 \\
x-6 & =0 \\
x & =6
\end{aligned}
$$

Oxidation number of Mn in $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is +6 .
2. $\mathrm{K}_{2} \mathrm{CrO}_{4}$

$$
\begin{aligned}
2(1)+x+4(-2) & =0 \\
2+x-8 & =0 \\
x-6 & =0 \\
x & =+6
\end{aligned}
$$

Oxidation number of Cr in $\mathrm{K}_{2} \mathrm{CrO}_{4}$ is +6 .
3. NO_{3}^{-}

$$
\begin{aligned}
x+3(-2) & =-1 \\
x-6 & =-1 \\
x & =-1+6=+5
\end{aligned}
$$

Oxidation number of N in NO_{3}^{-}is +5 .
4. $\mathbf{H}_{4} \underline{P}_{2} \mathrm{O}_{7}$

$$
\begin{aligned}
4(1)+2 x+7(-2) & =0 \\
4+2 x-14 & =0 \\
2 x-10 & =0 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

Oxidation number of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ is +5 .
5. ClO_{3}^{-}

$$
\begin{aligned}
x+3(-2) & =-1 \\
x-6 & =-1 \\
x & =+5
\end{aligned}
$$

Oxidation number of Cl in $\mathrm{ClO}_{3}{ }^{-}$is +5 .
6. $\mathrm{AsO}_{3}{ }^{3-}$

$$
\begin{aligned}
x+3(-2) & =-3 \\
x-6 & =-3 \\
x & =-3+6 \\
x & =+3
\end{aligned}
$$

Oxidation number of As in $\mathrm{AsO}_{3}{ }^{3-}$ is +3 .
4. An iron nail is placed in copper sulphate solution taken in the beaker. Observe it for some time? Find the changes that takes place and why?
Ans. When iron nail is dipped in copper sulphate solution, the colour of copper sulphate tuns from blue to light green and reddish brown deposits is formed on iron nail. This is because iron is more reactive than copper, so it displaces Cu from CuSO_{4} solution. The displacement reaction can be written as $\mathrm{CuSO}_{4}+\mathrm{Fe} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
5. The approximate production of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ per month is $424 \times 10^{6} \mathrm{~g}$ while that of methyl alcohol is $320 \times 10^{6} \mathbf{g}$. Which is produced more in terms of moles?

Ans.

$$
\begin{aligned}
& \text { Mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}=424 \times 10^{6} \mathrm{~g} \\
& \text { No of moles (n) }=\frac{\text { Mass of the substance }}{} \\
& \frac{\text { Molar mass of the substance }}{} \\
&=\frac{424 \times 10^{6}}{106} \\
&=4 \text { moles } \times 10^{6} \\
& \text { Mass of } \mathrm{CH}_{3} \mathrm{OH}=320 \times 10^{6} \mathrm{~g} \\
& \text { No of moles }=\begin{aligned}
\text { Mass of the substance }
\end{aligned} \\
&=\frac{320 \times 10^{6}}{32} \\
&=10 \times 10^{6} \mathrm{molar} \text { mass of the substance }
\end{aligned}
$$

Methyl alcohol is produced more.

6. Find the molecular mass of $\mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$.

Ans. Molecular mass of $\mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$
Atomic mass of $\mathrm{Fe}=55.845$
Atomic mass of $\mathrm{S}=32.065$
Atomic mass of $\mathrm{O}=15.994 \times 11=63.304$
Atomic mass of $\mathrm{H}=1.00794 \times 14=5.076$
Molecular mass of

$$
\begin{aligned}
& \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}= 55.945+32.065+ \\
&(4 \times 15.994)+7 \times(1.0079 \\
&\times 2+15.9994)
\end{aligned}
$$

7. The density of $\mathrm{CO}_{2}=1.977 \mathrm{kgm}^{-3}$ at STP. Calculate the molecular mass of CO_{2}.
Ans. Density of $\mathrm{CO}_{2}=1.977 \mathrm{Kgm}^{-3}$ $\mathrm{PV}=\mathrm{nRT}$
No of moles $=\frac{\text { Mass }}{\text { Molar Mass }}$

$$
\begin{aligned}
\mathrm{PV} & =\frac{\text { Mass }}{\text { Molar Mass }} \times \mathrm{R} \times \mathrm{T} \\
\text { Molar Mass } & =\frac{\text { Mass }}{\mathrm{V}} \times \frac{\mathrm{R} \times \mathrm{T}}{\mathrm{P}}
\end{aligned}
$$

This is Only for Sample
for Full Book Order Online and Available at All Leading Bookstores

$$
\begin{aligned}
\text { Density } & =\frac{\text { Mass }}{\mathrm{V}} \\
\text { Molar Mass of } \mathrm{CO}_{2} & =\frac{\mathrm{D} \times \mathrm{R} \times \mathrm{T}}{\mathrm{P}} \\
\text { Standard Temperature } & =273 \mathrm{~K} \\
\text { Standard Pressure } & =760 \mathrm{~mm} \text { of } \mathrm{Hg}=1 \mathrm{~atm} \\
& =\frac{1.977 \times 0.0821 \times 273}{1} \\
& =44
\end{aligned}
$$

8. How many moles of glucose are present in 720 g of glucose?
Ans. Mass of glucose $=720 \mathrm{~g}$
Molecular weight of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=180$

$$
\begin{aligned}
\text { No. of moles } & =\frac{\text { Mass }}{\text { Molar Mass }} \\
& =\frac{720}{180}=4 \text { moles }
\end{aligned}
$$

9. Calculate the weight of 0.2 mole of sodium carbonate.

Ans. No. of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.2$ mole
Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} / \mathrm{mol}$
Mass $=$ No of moles \times molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
=0.2 \times 106=21.2 \mathrm{~g}
$$

10. Calculate the equivalent mass of bicarbonate ion.

Ans.

Bicarbonate ion	$=\mathrm{HCO}_{3}^{-}$
Molar of HCO_{3}^{-}	$=61$
Equivalent mass of ion	$=\frac{\text { Molar mass }}{\text { Charge of ion }}$
Equivalent mass of HCO_{3}^{-}	$=\frac{61}{1}=61$

11. Calculate the equivalent mass of barium hydroxide

Ans. Equivalent mass of $\mathrm{Ba}(\mathrm{OH})_{2}$
Molar mass of $\mathrm{Ba}(\mathrm{OH})_{2}=171.34 \mathrm{~g} / \mathrm{mol}$
Acidity of the $\mathrm{Ba}(\mathrm{OH})_{2}=2$
Equivalent mass of the $\mathrm{Ba}(\mathrm{OH})_{2}$

$$
\begin{aligned}
& =\frac{\text { Molar mass of the base }}{\text { Acidity of the base }} \\
& =\frac{171.34}{2}=85.5
\end{aligned}
$$

12. Boric acid, $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a mild antiseptic and is often used as an eye wash. A sample contains $0.543 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}$. What is the mass of boric acid in the sample.
Ans. Formula mass of boric acid $\mathrm{H}_{3} \mathrm{BO}_{3}=61.834 \mathrm{amu}$
1 mole of $\mathrm{H}_{3} \mathrm{BO}_{3}=$ Molar mass of $\mathrm{H}_{3} \mathrm{BO}_{3}$
$=61.834 \mathrm{~g}$
0.543 mole of $\mathrm{H}_{3} \mathrm{BO}_{3}=61.834 \times 0.543$
$=33.57 \mathrm{~g}$ of $\mathrm{H}_{3} \mathrm{BO}_{3}$
The mass of
0.543 moles of $\mathrm{H}_{3} \mathrm{BO}_{3}=33.57 \mathrm{~g}$
13. (i) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+$ $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
Ans.

Equalise the increase / decrease in O N by multiplying I species by 1

$$
\begin{array}{r}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{KI}+\underset{\mathrm{Cr}_{2} \mathrm{SO}_{4}}{\left.\longrightarrow \mathrm{SO}_{4}\right)_{3}}+3 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Balance all other atoms except H and O
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+$ $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
Balance O atom by adding $\mathrm{H}_{2} \mathrm{O}$ on the the side falling short of oxygen
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+$

$$
\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}
$$

So the balanced equation is
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+$

$$
\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

(ii) $\mathrm{KMnO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+$ KOH (Alkaline medium)
Decrease in O.N
(Reduction)

Equalise the increase / decrease in O N by multiplying Mn species by 2 and S species by 3 $2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3} \longrightarrow 2 \mathrm{MnO}_{2}+$ $3 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}$
Balance all other atoms except H and O

$$
2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3} \xrightarrow[3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH}]{2 \mathrm{MnO}_{2}}+
$$

Balance O atoms by adding $\mathrm{H}_{2} \mathrm{O}$ molecules on the side falling short of oxygen atom.

$$
2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \underset{3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH}}{ } 2 \mathrm{MnO}_{2}+
$$

(iii) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCI}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow[\mathrm{CrO}_{2} \mathrm{CI}_{2}+\mathrm{H}_{2} \mathrm{O}]{\mathrm{KHSO}_{4}+}$

It is not a redox reaction.
(iv) $\mathrm{Cu}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Increase in ON
(Oxidation)

Equalise the increase / decrease in O N by multiplying Cu species by +1 and N species by $+2$
$\mathrm{Cu}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Balance all other atoms except H and O atoms
$\mathrm{Cu}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Balance O atom by adding $\mathrm{H}_{2} \mathrm{O}$ molecules on the side falling short of oxygen atoms.

$$
\mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

The balanced equation in

$$
\mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+
$$

(v) $\mathrm{P}+\mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Increase in O N
(Oxidation)

Equalise the increase / decrease in O N by multiplying P species by +1 and N species by $+5$
(vi) $\mathrm{P}+5 \mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

All atoms are balanced
Balanced Equation is
$\mathrm{P}+5 \mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(vii) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+$ $\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Equalise the increase / decrease in O N by multiplying Cu species by 5 and Mn species by 1

$$
\begin{array}{r}
5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+ \\
\mathrm{MnSO}_{4}+5 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Balance all other atoms except H and O atoms

$$
\begin{aligned}
& 5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \\
&+2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+\mathrm{SO}_{4} \\
&
\end{aligned}
$$

Balance O atom by adding $\mathrm{H}_{2} \mathrm{O}$ on the side falling short of oxygen atoms.

$$
\begin{aligned}
5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+ & 2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4} \\
& +2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The balanced equation in

$$
\begin{array}{r}
5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4} \\
+2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

(viii) $\mathrm{CuO}+\mathrm{NH}_{3} \longrightarrow \mathrm{Cu}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CuO}+\mathrm{NH}_{3} \longrightarrow \mathrm{Cu}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cu}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$ (Reduction)
$\mathrm{N}^{-3} \longrightarrow \mathrm{~N}^{0}{ }_{2}+3 \mathrm{e}^{-}$(oxidation)
Multiply Equation (2) by 2 to balance nitrogen atom
$2 \mathrm{~N}^{-3} \longrightarrow \mathrm{~N}_{2}^{0}+6 \mathrm{e}^{-}$
Multiply equation (1) by 3 to balance the number of electrons.
$3 \mathrm{Cu}^{2+}+6 \mathrm{e}^{-} \longrightarrow 3 \mathrm{Cu}$
Add equation (3) and (4)
$3 \mathrm{Cu}^{2+}+2 \mathrm{~N}^{-3} \longrightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}$
Over all balanced equation
$3 \mathrm{CuO}+2 \mathrm{NH}_{3} \longrightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
Balance O atom by adding $\mathrm{H}_{2} \mathrm{O}$ on the side falling short of it.
$3 \mathrm{CuO}+2 \mathrm{NH}_{3} \longrightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
(ix) $\mathrm{Zn}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+$ $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Zn}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+$ $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Zn}^{0} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
$\mathrm{N}^{+5}+8 \mathrm{e}^{-} \longrightarrow \mathrm{N}^{-3}$
Multiply Equation (1) by 4 to balance the electrons
$4 \mathrm{Zn}^{0} \longrightarrow 4 \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
Add equation (3) and (2)
$4 \mathrm{Zn}^{0} \longrightarrow 4 \mathrm{Zn}^{2+}+8 \mathrm{~S}^{\Upsilon}$
$\mathrm{N} 5++8 e^{-} \longrightarrow \mathrm{N}^{3-}$
$4 \mathrm{Zn}^{0}+\mathrm{N}^{5+} \longrightarrow 4 \mathrm{Zn}^{2+}+\mathrm{N}^{3-}$
Overall equation
$4 \mathrm{Zn}+10 \mathrm{HNO}_{3}$

$$
4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Balance all the atoms except O and H
$4 \mathrm{Zn}+10 \mathrm{HNO}_{3} \xrightarrow[4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}]{ }+\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}$
Balance oxygen atom by adding $\mathrm{H}_{2} \mathrm{O}$ on the side falling short of oxygen atom.
$4 \mathrm{Zn}+10 \mathrm{HNO}_{3} \xrightarrow[4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}]{ }+\mathrm{NH}_{4} \mathrm{NO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
14. (i) $\mathrm{MnO}_{4}^{-}+\mathrm{Sn}^{2+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{Sn}^{4+}$

Ans.
Decrease in O.N
(Reduction)

Equalise the increase / decrease in O.N by multiplying the oxidant and reductant by suitable numbers.
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Sn}^{2+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Sn}^{4+}$
Balance all other atoms except O and H
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Sn}^{2+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Sn}^{4+}$
Balance O atom by adding water on the the side falling short of oxygen otoms.
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Sn}^{2+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Sn}^{4+}$ $8 \mathrm{H}_{2} \mathrm{O}$

Balance H atom by adding $\mathrm{H}+$ on the side falling short of hydrogen atoms.

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Sn}^{2+} 16 \mathrm{H}^{+} \xrightarrow[2 \mathrm{Mn}^{2+}+5 \mathrm{Sn}^{4+}+8 \mathrm{H}_{2} \mathrm{O}]{ }
$$

(ii) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}$

Increase in O.N
(Oxidation)

$$
3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{CO}_{2}
$$

$$
+7 \mathrm{H}_{2} \mathrm{O}
$$

$$
3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}
$$

$$
+6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

(iii) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{I}^{-}$

Increase in O.N
(Oxidation)

$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{I}^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{I}^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{S}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{I}^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{CI}^{-}+$ $2 \mathrm{H}^{+}$
(iv) $\mathbf{S b}^{3+}+\mathbf{M n O}_{4}^{-} \longrightarrow \mathbf{S b}^{5+}+\mathbf{M n}^{\mathbf{2 +}}$

Decrease in O.N
Reduction

Equalise the increase / decrease in Oxidation number by multiplying with suitable numbers.
$5 \mathrm{Sb}^{3+}+2 \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Sb}^{5+}+\mathrm{Mn}^{2+}$
Balance all other atoms except O and H
$5 \mathrm{Sb}^{3+}+2 \mathrm{MnO}_{4}^{-} \longrightarrow 5 \mathrm{Sb}^{5+}+2 \mathrm{Mn}^{2+}$ Balance Oxygen atom by adding $\mathrm{H}_{2} \mathrm{O}$ on the side falling short of oxygen.

$$
\begin{aligned}
5 \mathrm{Sb}^{3+}+2 \mathrm{MnO}_{4}^{-} \longrightarrow & 5 \mathrm{Sb}^{5+}+2 \mathrm{Mn}^{2+} \\
& +8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Balance hydrogen atom by adding H^{+}on the side falling short of hydrogen atoms.

$$
\begin{array}{r}
5 \mathrm{Sb}^{3+}+2 \mathrm{MnO}_{4}^{-} \longrightarrow 5 \mathrm{Sb}^{5+}+2 \mathrm{Mn}^{2+}+ \\
8 \mathrm{H}_{2} \mathrm{O}+16 \mathrm{H}^{+}
\end{array}
$$

(v) $\mathrm{MnO}_{4}{ }^{\mathbf{2 -}} \longrightarrow \mathrm{MnO}_{4}{ }^{2-}+\mathbf{M n O}_{\mathbf{2}}$

$$
\begin{array}{cc}
\underset{+6}{\mathrm{MnO}_{4}{ }^{2-}} \underset{+6}{ } \mathrm{MnO} \\
\mathrm{MnO}_{4}^{-} \\
\mathrm{MnO}_{4}{ }^{2-} & +2 \mathrm{e}^{-} \longrightarrow \\
+6 \tag{2}
\end{array} \mathrm{e}^{-} \text {(Oxidation) }
$$

Multiply equation (1) by (2)
$2 \mathrm{MnO}_{4}{ }^{2-} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+2 \mathrm{e}^{-}$
Add equation (2) and (3)
$3 \mathrm{MnO}_{4}{ }^{2-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{MnO}_{4}^{-}$
Balance O atoms by adding $\mathrm{H}_{2} \mathrm{O}$ on the side falling short of oxygen atoms
$3 \mathrm{MnO}_{4}{ }^{2-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
Balance H atoms by adding H^{+}on the side falling short of hydrogen atoms

$$
3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{MnO}_{4}^{-}
$$

$$
+2 \mathrm{H}_{2} \mathrm{O}
$$

(vii) $\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}$

Decrease in O.N

Reduction

Equalise the increase / decrease in Oxidation number by multiplying Mn species by 1 and Fe species by 5 .
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}$
Balance all other atoms except O and H
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}$
Balance O atom by adding $\mathrm{H}_{2} \mathrm{O}$ on the side falling short of hydrogen and equal number OH^{-}on the opposite side.

$$
\begin{array}{r}
\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mn}^{2+}+ \\
5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{OH}^{-} \\
\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mn}^{2+}+ \\
5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{OH}^{-}
\end{array}
$$

This is Only for Sample for Full Book Order Online and Available at All Leading Bookstores
(viii) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}_{2} \mathrm{O}_{6}{ }^{2-}+\mathrm{I}^{-}$

Increase in O.N Oxidation
 Reduction

Equalise the increase / decrease in O.N by multiplying the S species by 1 and I species by 3 .
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+3 \mathrm{I}_{2} \longrightarrow \mathrm{~S}_{2} \mathrm{O}_{6}{ }^{2-}+3 \mathrm{I}^{-}$
Balance all other atoms except O and H
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+3 \mathrm{I}_{2} \longrightarrow \mathrm{~S}_{2} \mathrm{O}_{6}{ }^{2-}+6 \mathrm{I}^{-}$
Balance O atom by adding $\mathrm{H}_{2} \mathrm{O}$ on the side falling short of Oxygen.

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{~S}_{2} \mathrm{O}_{6}^{2-}+
$$

$$
6 \mathrm{I}^{-}
$$

Balance H atom by adding $\mathrm{H}+$ ion on the side falling short of hydrogen.
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}+$ $6 \mathrm{I}^{-}+6 \mathrm{H}^{+}$

Add equal number of OH - ion on the both side since the medium is alkaline
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{OH}^{-} \longrightarrow$ $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}+6 \mathrm{I}^{-}+6 \mathrm{H}^{+}+60 \mathrm{H}^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{OH}^{-} \longrightarrow$

$$
\mathrm{S}_{2} \mathrm{O}_{6}^{2-}+6 \mathrm{I}^{-}+6 \mathrm{H}_{2} \mathrm{O}
$$

15. A compound contains 50% of X (atomic mass 10) and $50 \% Y$ (atomic mass 20). Give its molecular formula.

Ans.

Element	Percentage	Atomic mass	Relative No. of moles	Simple Ratio Moles	Simplest whole number Ratio
X	50	10	$\frac{50}{10}=5$	$\frac{5}{2.5}=2$	2
Y	50	20	$\frac{50}{20}=25$	$\frac{2.5}{2.5}=1$	1

Its simplest formula $=X_{2} \mathrm{Y}$
16. Determine the empirical formula of a compound containing $\mathrm{K}=\mathbf{2 4 . 7 5 \%} \mathrm{Mn}=34.77 \%$ and rest is oxygen.

Ans.

Element	Percentage	Atomic mass	Relative No. of moles	Simple Ratio Moles	Simplest whole number Ratio
K	24.75	39	$\frac{24.75}{39}=0.63$	$\frac{0.63}{0.63}=1$	1
Mn	34.77	55	$\frac{34.77}{55}=0.63$	$\frac{0.63}{0.63}=1$	1
O	$100-$ $(24.75+34.77)=40.48$	16	$\frac{40.48}{16}=2.53$	$\frac{2.53}{0.63}=4$	4

The empirical formula is KMnO_{4}

