

Mathematics IX - Standard

Strictly as per the Reduced (Prioritised) Syllabus released on 13th August, 2021 (G.O.(Ms).No126)

Salient Features :

- Complete Solutions to Textbook Exercises.
- Common Quarterly Exam 2019 and Common Half yearly Exam 2019 are incorporated in the appropriate sections.
- Sura's Model question paper with answers are given based on the reduced syllabus.

2021 - 22 Edition © Reserved with Publishers

> ISBN : 978-93-5330-463-8 Code No. : RPS_060

Author :

Mrs. S. Thamarai, M.Sc., M.A., M.Ed., M.Phil. Chennai

Head Office:

1620, 'J' Block, 16th Main Road, Anna Nagar, **Chennai - 600 040. Phones**: 044-4862 9977, 044-486 27755. **Mob** : 81242 01000 / 81243 01000 **e-mail :** orders@surabooks.com **website :** www.surabooks.com

Our Guides for Std. IX

FULL YEAR GUIDES for 3 Terms together

- ▲ Sura's Tamil Guide
- 🔺 Sura's English Guide
- Sura's Maths Guide (EM & TM)
- Sura's Science Guide (EM &TM)
- Sura's Social Science Guide (EM & TM)
- Sura's Map Workbook (EM & TM)

Our Guides for Std. X

GUIDES

🔸 சுராவின் தமிழ் உரைநூல்

- ✦ Sura's English Guide
- + Sura's Will to Win English Guide
- + Sura's Mathematics Guide (EM & TM)
- Sura's Science Guide (EM & TM)
- Sura's Social Science Guide (EM & TM)

QUESTION BANKS

- Sura's PTA Solution Book & Exam Refresher (EM & TM)
- Sura's 5-in-1 Question Bank (EM & TM)
- Sura's Sigaram Thoduvom 5-in-1 One Mark (EM & TM)
- Sura's Sigaram Thoduvom (EM & TM) for each subject
- Sura's Will to Win 1 Mark Q & A English Paper I & II
- Sura's Map Workbook (EM & TM)

NOTE FROM PUBLISHER

It gives me great pride and pleasure in bringing to you **Sura's Mathematics Guide** for **9**th **Standard**.

This guide encompasses all the requirements of the students to comprehend the text and the evaluation of the textbook.

In order to learn effectively, I advise students to learn the subject section-wise and practice the exercises given. It will be a teaching companion to teachers and a learning companion to students.

Though these salient features are available in this Guide, I cannot negate the indispensable role of the teachers in assisting the student to understand the subject thoroughly.

I sincerely believe this guide satisfies the needs of the students and bolsters the teaching methodologies of the teachers.

I pray the almighty to bless the students for consummate success in their examinations.

Subash Raj, B.E., M.S. - Publisher Sura Publications

All the Best

For More Information - Contact					
Doubts in Our Guides	enquiry@surabooks.com				
For Order :	orders@surabooks.com				
Contact :	80562 94222 / 80562 15222				
Whatsapp :	8124201000 / 9840926027				
Online Site : www.surabooks.com					
For Free Study Materials Visit http://tnkalvi.in					

CONTENTS

1 Set Language 1 - 12 2 Real Numbers 13 - 29 3 Algebra 30 - 68 4 Geometry 69 - 95 5 Coordinate Geometry 96 - 117 6 Trigonometry 118 - 130 7 Mensuration 131 - 136 8 Statistics 137 - 139 9 Probability 140 - 146	Unit	Chapter	Page No.
2 Real Numbers 13 - 29 3 Algebra 30 - 68 4 Geometry 69 - 95 5 Coordinate Geometry 96 - 117 6 Trigonometry 118 - 130 7 Mensuration 131 - 136 8 Statistics 137 - 139 9 Probability 140 - 146	1	Set Language	1 - 12
3 Algebra 30 - 68 4 Geometry 69 - 95 5 Coordinate Geometry 96 - 117 6 Trigonometry 118 - 130 7 Mensuration 131 - 136 8 Statistics 137 - 139 9 Probability 140 - 146	2	Real Numbers	13 - 29
4 Geometry 69 - 95 5 Coordinate Geometry 96 - 117 6 Trigonometry 118 - 130 7 Mensuration 131 - 136 8 Statistics 137 - 139 9 Probability 140 - 146	3	Algebra	30 - 68
5 Coordinate Geometry 96 - 117 6 Trigonometry 118 - 130 7 Mensuration 131 - 136 8 Statistics 137 - 139 9 Probability 140 - 146 Sura's Model Question Paper with answers	4	Geometry	69 - 95
6 Trigonometry 118 - 130 7 Mensuration 131 - 136 8 Statistics 137 - 139 9 Probability 140 - 146 Sura's Model Question Paper with answers	5	Coordinate Geometry	96 - 117
7 Mensuration 131 - 136 8 Statistics 137 - 139 9 Probability 140 - 146 Sura's Model Question Paper with answers	6	Trigonometry	118 - 130
8 Statistics 137 - 139 9 Probability 140 - 146 Sura's Model Question Paper with answers	7	Mensuration	131 - 136
9 Probability 140 - 146 Sura's Model Question Paper with answers 147 - 162	8	Statistics	137 - 139
Sura's Model Question Paper with answers 147 169	9	Probability	140 - 146
based on reduced syllabus		Sura's Model Question Paper with answers based on reduced syllabus	147 - 162

Strictly as per the Reduced (Prioritised) Syllabus released on 13th August, 2021 (G.O.(Ms).No126)

UNIT	CONTENT
1.	Set Language
1.1	Introduction
1.2	Set
1.3	Representation of a set
1.4	Types of sets
2.	Real Numbers
2.1	Introduction
2.2	Rational Numbers
2.3	Irrational Numbers
2.4	Real Numbers
2.5	Radical Notation
3.	Algebra
3.1	Introduction
3.2	Polynomials
3.3	Remainder Theorem
3.4	Algebraic Identities
3.5	Factorization
3.6	Division of Polynomials
3.7	Greatest Common Divisor
4.	Geometry
4.4	Parts of a Circle
4.5	Properties of Chords of a Circle
4.6	Cyclic Quadrilaterals
4.7	Practical Geometry

UNIT	CONTENT		
5.	Coordinate Geometry		
5.1	5.1 Mapping of the plane		
5.2	5.2 Devising the coordinate system		
5.3	5.3 Distance between any two points		
5.4	5.4 Midpoint of a line segment		
6.	Trigonometry		
6.1	Introduction		
6.2	Trigonometric Ratios of some Special Angles		
6.3	Trigonometric ratios for complemen- tary angles		
6.4	Method of Using Trigonometric Tables		
7.	Mensuration		
7.4	Surface Area of Cuboids and Cube		
7.5	Volume of Cuboids and Cube		
8.	Statistics		
8.1	Introduction		
8.2	Collection of Data		
9.	Probability		
9.1	Introduction		
9.2	Basic Ideas		
9.3	Classical Approach		
9.4	Empirical Approach		
9.5	Types of Events		
(*All e conten	xamples and exercise problems for the t mentioned above)		

TO ORDER WITH US

SCHOOLS and TEACHERS:

We are grateful for your support and patronage to 'SURA PUBLICATIONS' Kindly prepare your order in your School letterhead and send it to us. For Orders contact: 81242 01000 / 81243 01000

DIRECT DEPOSIT

A/c Name	: Sura Publications	A/c Name : S	Sura Publications
Our A/c No.	: 36550290536	Our A/c No. : 2	21000210001240
Bank Name	: STATE BANK OF INDIA	Bank Name :	UCO BANK
Bank Branch	: PADI	Bank Branch :	Anna Nagar West
IFSC	: SBIN0005083	IFSC :	UCBA0002100
A/c Name	: Sura Publications	A/c Name : S	Sura Publications
A/c Name Our A/c No.	: Sura Publications : 6502699356	A/c Name : Our A/c No. :	Sura Publications 1154135000017684
A/c Name Our A/c No. Bank Name	: Sura Publications : 6502699356 : INDIAN BANK	A/c Name : S Our A/c No. : Bank Name : D	Sura Publications 1154135000017684 KVB BANK
A/c Name Our A/c No. Bank Name Bank Branch	: Sura Publications : 6502699356 : INDIAN BANK : ASIAD COLONY	A/c Name : 9 Our A/c No. : 7 Bank Name : 1 Bank Branch : 7	Sura Publications 1154135000017684 KVB BANK Anna Nagar

After Deposit, please send challan and order to our address. email : orders@surabooks.com / Whatsapp : 81242 01000.

DEMAND DRAFT / CHEQUE

Please send Demand Draft / cheque in favour of **`SURA PUBLICATIONS'** payable at **Chennai**.

The Demand Draft / cheque should be sent with your order in School letterhead.

STUDENTS :

Order via Money Order (M/O) to

SURA PUBLICATIONS

1620, 'J' Block, 16th Main Road, Anna Nagar,

Chennai - 600 040.

Phones : 044-4862 9977, 044-486 27755.

Mobile : 81242 01000/ 81243 01000.

email : orders@surabooks.com Website : www.surabooks.com

This is Only for Sample for Full Book order Online or Available at All Leading Bookstores b

Set Language

1.1 Introduction

In our daily life, we often deal with collection of objects like books, stamps, coins, etc. Set language is a mathematical way of representing a collection of objects.

1.2 Set :

- (i) A set is a well defined collection of objects.
- (ii) The objects of a set are called its members or elements. For example,
 - 1. The collection of all books in a District Central Library.
 - 2. The collection of all colours in a rainbow.

1.3 Representation of a Set :

The collection of odd numbers can be described in many ways:

- (1) "The set of odd numbers" is a fine description, we understand it well.
- (2) It can be written as $\{1, 3, 5, ...\}$ and you know what I mean.
- (3) Also, it can be said as the collection of all numbers x where x is an odd number.

1.3.1 Descriptive Form :

In descriptive form, a set is described in words.

For Example,

- (i) The set of all vowels in English alphabets.
- (ii) The set of whole numbers.

1.3.2 Set Builder Form or Rule Form :

In set builder form, all the elements are described by a rule. **For example,**

- (i) $A = \{x : x \text{ is a vowel in English alphabets}\}$
- (ii) $B = \{x \mid x \text{ is a whole number}\}$

1.3.3 Roster Form or Tabular Form

A set can be described by listing all the elements of the set.

For example,

- (i) $A = \{a, e, i, o, u\}$
- (ii) $B = \{0, 1, 2, 3, ...\}$

7

c

Exercise 1.1

1.	Which	of the	following	are sets?
----	-------	--------	-----------	-----------

- (i) The Collection of prime numbers upto 100.
- (ii) The Collection of rich people in India.
- (iii) The Collection of all rivers in India.
- (iv) The Collection of good Hockey players.
- **Sol.** (i) $A = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97\}$

As the collection of prime numbers upto 100 is known and can be counted (well defined). Hence this is a set.

- (ii) The collection of rich people in India. Rich people has no definition. Hence, it is not a set.
- (iii) A = {Cauvery, Sindhu, Ganga,} Hence, it is a set.
- (iv) The collection of good hockey players is not a well defied collection because the criteria for determining a hockey player's talent may vary from person to person.

Hence, this collection is not a set.

2. List the set of letters of the following words in Roster form.

- (i) INDIA (ii) PARALLELOGRAM
- (iii) MISSISSIPPI (iv) CZECHOSLOVAKIA
- **Sol.** (i) $A = \{I, N, D, A\}$
 - (ii) $B = \{P, A, R, L, E, O, G, M\}$
 - (iii) $C = \{M, I, S, P\}$
 - (iv) $D = \{C, Z, E, H, O, S, L, V, A, K, I\}.$
- 3. Consider the following sets $A = \{0, 3, 5, 8\}$ $B = \{2, 4, 6, 10\}$ $C = \{12, 14, 18, 20\}$
 - (a) State whether True or false.
 - (i) $18 \in C$ (ii) $6 \notin A$ (iii) $14 \notin C$ (iv) $10 \in B$ (v) $5 \in B$ (vi) $0 \in B$
 - (b) Fill in the blanks?
 - (i) $3 \in$ ____ (ii) $14 \in$ ____ (iii) 18 ___ B (iv) 4 ____ B

Sol. (a) (i) True

(b) (i) A (ii) C

- (ii) True (iii) False (iv) True (v) False C (iii) \notin (iv) \in
- 4. **Represent the following sets in Roster form.**
 - (i) A = The set of all even natural numbers less than 20. [QY-2019]

(ii)
$$\mathbf{B} = \{y : y = \frac{1}{2n}, n \in \mathbb{N}, n \le 5\}$$

- (iii) $C = \{x : x \text{ is perfect cube, } 27 < x < 216\}$
- (iv) $D = \{x : x \in \mathbb{Z}, -5 < x \le 2\}$

(vi) False.

Sol. (1)
$$A = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$$

(ii) $N = \{1, 2, 3, 4, 5\}$
if, $n = 1, y = \frac{1}{2n} = \frac{1}{2 \times 1} = \frac{1}{2}$
 $n = 2, y = \frac{1}{2 \times 2} = \frac{1}{4}$
 $n = 3, y = \frac{1}{2 \times 3} = \frac{1}{6}$
 $n = 4, y = \frac{1}{2 \times 4} = \frac{1}{8}$
 $n = 5, y = \frac{1}{2 \times 5} = \frac{1}{10}$
 $\therefore B = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}\right\}$
(iii) $C = \{64, 125\}$

- (11) C (01, 125)
- (iv) $D = \{-4, -3, -2, -1, 0, 1, 2\}$

5. Represent the following sets in set builder form.

(i) B = The set of all Cricket players in India who scored double centuries in One Day Internationals.

(ii)
$$C = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}.$$

(iii) **D** = The set of all tamil months in a year.

(iv) E = The set of an odd Whole numbers less than 9.

Sol. (i) $B = \{x : x \text{ is an Indian player who scored double centuries in One Day Internationals}\}$

(ii)
$$C = \{x : x = \frac{n}{n+1}, n \in \mathbb{N}\}$$

- (iii) $D = \{x : x \text{ is a tamil month in a year}\}$
- (iv) $E = \{x : x \text{ is an odd number}, x \in \mathbb{W}, x < 9, \text{ where W is the set of whole numbers}\}.$

6. Represent the following sets in descriptive form.

- (i) **P** = { January, June, July}
- (ii) $Q = \{7,11,13,17,19,23,29\}$
- (iii) $R = \{x : x \in \mathbb{N}, x < 5\}$

(iv) $S = \{x : x \text{ is an consonant in English alphabets}\}$

- **Sol.** (i) P is the set of English Months begining with J.
 - (ii) Q is the set of all prime numbers between 5 and 31.
 - (iii) R is the set of all natural numbers less than 5.
 - (iv) S is the set of all English consonants.

1.4	Types of sets			
}	1.4.1	Empty Set or Null Set :		
{		A set consisting of no element is called the empty set or null set or void set.		
}		For example,		
}		A={ $x : x$ is an odd integer and divisible by 2}		
{		$\therefore A=\{\} \text{ or } \emptyset$		
}	1.4.2	Singleton Set :		
}		A set which has only one element is called a singleton set.		
}		For example,		
}	1.1.0	$A = \{x : 3 < x < 5, x \in \mathbb{N}\}$		
{	1.4.3	Finite Set :		
}		A set with finite number of elements is called a finite set.		
}		The set of family members		
{		 The set of indoor/outdoor games you play. 		
}	1 4 4	2. The set of indoor/outdoor games you play.		
{	1.7.7	A set which is not finite is called an infinite set		
}		For example.		
}		(i) {5.10.15} (ii) The set of all points on a line.		
{	1.4.5	Equivalent Sets :		
}		Two finite sets A and B are said to be equivalent if they contain the same number		
{		of elements. It is written as $A \approx B$.		
}		If A and B are equivalent sets, then $n(A) = n(B)$.		
}	1.4.6	Equal Sets :		
{		Two sets are said to be equal if they contain exactly the same elements, otherwise		
}		they are said to be unequal.		
{		In other words, two sets A and B are said to be equal, If (i) $avery element of A is also an element of P$		
}		(i) every element of B is also an element of B (ii) every element of B is also an element of A		
}	147	Subset ·		
}	1.1./	Let A and B be two sets. If every element of A is also an element of B then		
}		A is called a subset of B. We write $A \subseteq B$.		
}	1.4.8	Proper Subset :		
}		Let A and B be two sets. If A is a subset of B and $A\neq B$, then A is called a proper		
{		subset of B and we write $A \subset B$.		
		For example,		
	140	If $A = \{1,2,5\}$ and $B = \{1,2,3,4,5\}$ then A is a proper subset of B i.e. $A \subset B$.		
	1.4.9	Power set : The set of all subsets of A is said to be the newer set of the set A and is denoted as		
}		P(A) $P(A)$		
{		For example.		
}		Let $A = \{-3, 4\}$		
{		The subsets of A are, \emptyset , $\{-3\}$, $\{4\}$, $\{-3, 4\}$		
}		Then the power set of A is $P(A) = \{\emptyset, \{-3\}, \{4\}, \{-3, 4\}\}$		

Exercise 1.2

- **1.** Find the cardinal number of the following sets.
 - (i) $\mathbf{M} = \{p, q, r, s, t, u\}$
 - (ii) $P = \{x : x = 3n + 2, n \in W \text{ and } x < 15\}$
 - (iii) $\mathbf{Q} = \{y : y = \frac{4}{3n}, n \in \mathbb{N} \text{ and } 2 < n \le 5\}$
 - (iv) $\mathbf{R} = \{x : x \text{ is an integers}, x \in \mathbb{Z} \text{ and } -5 \le x < 5\}$
 - (v) S = The set of all leap years between 1882 and 1906.

Sol. (i) n(M) = 6

(ii) W = {0, 1, 2, 3,} if n = 0, x = 3(0) + 2 = 2if n = 1, x = 3(1) + 2 = 5if n = 2, x = 3(2) + 2 = 8if n = 3, x = 3(3) + 2 = 11if n = 4, x = 3(4) + 2 = 14 $\therefore P = \{2, 5, 8, 11, 14\}$

(iii) N = {1, 2, 3, 4,}

$$n \in \{3, 4, 5\}$$

if $n = 3$, $y = \frac{4}{3(3)} = \frac{4}{9}$
if $n = 4$, $y = \frac{4}{3(4)} = \frac{4}{12}$
if $n = 5$, $y = \frac{4}{3(5)} = \frac{4}{15}$
 $Q = \left\{\frac{4}{9}, \frac{4}{12}, \frac{4}{15}\right\}$
 $n(Q) = 3$

(iv) $x \in z$ R = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4}

$$n(R) = 10.$$

- (v) S = {1884, 1888, 1892, 1896, 1904}
 n (S) = 5.
- Identify the following sets as finite or infinite.
 - (i) **X** = The set of all districts in Tamilnadu.
 - (ii) Y = The set of all straight lines passing through a point.
 - (iii) $A = \{ x : x \in \mathbb{Z} \text{ and } x < 5 \}$
 - (iv) $B = \{x : x^2 5x + 6 = 0, x \in \mathbb{N}\}\$

6

Sura's	• Mathematics	- 9th Std O	Chapter 1	Set Language
--------	---------------	-------------	-----------	--------------

Sol. (i) Finite set (ii) Infinite set (iii) $A = \{ \dots, -2, -1, 0, 1, 2, 3, 4 \}$: Infinite set (iv) $x^2 - 5x + 6 = 0$ (x-3)(x-2) = 0 $B = \{3, 2\}$: Finite set. Which of the following sets are equivalent or unequal or equal sets? 3. A = The set of vowels in the English alphabets. (i) B = The set of all letters in the word "VOWEL" (ii) $C = \{2, 3, 4, 5\}$ D = { $x : x \in \mathbb{W}, 1 < x < 5$ } (iii) $X = A = \{x : x \text{ is a letter in the word "LIFE"}\}$ $Y = \{F, I, L, E\}$ (iv) G = {x : x is a prime number and 3 < x < 23} H = {x : x is a divisor of 18} **Sol.** (i) $A = \{a, e, i, o, u\}$ $B = \{V, O, W, E, L\}$ The sets A and B contain the same number of elements. : Equivalent sets (ii) $C = \{2, 3, 4, 5\}$ $D = \{2, 3, 4\}$: Unequal sets (iii) $X = \{L, I, F, E\}$ $Y = \{F, I, L, E\}$ The sets X and Y contain the exactly the same elements. \therefore Equal sets. (iv) $G = \{5, 7, 11, 13, 17, 19\}$ $H = \{1, 2, 3, 6, 9, 18\}$: Equivalent sets. 4. Identify the following sets as null set or singleton set. (i) $A = \{x : x \in \mathbb{N}, 1 \le x \le 2\}$ (ii) B = The set of all even natural numbers which are not divisible by 2. (iii) $C = \{0\}.$ (iv) D = The set of all triangles having four sides.**Sol.** (i) $A = \{\}$: There is no element in between 1 and 2 in Natural numbers. Null set (ii) $B = \{\}$ All even natural numbers are divisible by 2. \therefore B is Null set (iii) $C = \{0\}$:: Singleton set (iv) $D = \{\}$:: No triangle has four sides. ... D is a Null set. 5. State which pairs of sets are disjoint or overlapping? (i) $A = \{f, i, a, s\}$ and $B = \{a, n, f, h, s\}$ (ii) $C = \{x : x \text{ is a prime number}, x > 2\}$ and $D = \{x : x \text{ is an even prime number}\}$ (iii) $E=\{x : x \text{ is a factor of } 24\}$ and $F=\{x : x \text{ is a multiple of } 3, x < 30\}$ $A = \{f, i, a, s\}$ Sol. (i) $B = \{a, n, f, h, s\}$ $A \cap B = \{f, i, a, s\} \cap \{a, n, f, h, s\} = \{f, a, s\}$ Since $A \cap B \neq \phi$, A and B are overlapping sets.

	(ii) $C = \{3, 5, 7, 11, \dots\}$		
	$D = \{2\}$		
	$C \cap D = \{3, 5, 7, 11, \dots\} \cap \{2\} = \{ \}$		
	Since $C \cap D = \emptyset$, C and D are disjoint sets.		
	(iii) $E = \{1, 2, 3, 4, 6, 8, 12, 24\}$		
	$F = \{3, 6, 9, 12, 15, 18, 21, 24, 27\}$		
	$E \cap F = \{1, 2, 3, 4, 6, 8, 12, 24\} \cap \{3, 6, 9, 12, 15, 18, 21, 24, 27\}$		
	$= \{3, 6, 12, 24\}$		
	Since $E \cap F \neq \phi$, E and F are overlapping sets.		
6.	If $S = \{square, rectangle, circle, rhombus, triangle\}$, list the elements of the following subset of S.		
	(i) The set of shapes which have 4 equal sides.		
	(ii) The set of shapes which have radius.		
	(iii) The set of shapes in which the sum of all interior angles is 180°		
	(iv) The set of shapes which have 5 sides.		
Sol.	(i) {Square, Rhombus} (ii) {Circle}		
	(iii) {Triangle} (iv) Null set.		
7.	If $A=\{a,\{a,b\}\}$, write all the subsets of A.		
Sol.	A = $\{a, \{a, b\}\}$ subsets of A are $\{\} \{a\}, \{a, b\}, \{a, \{a, b\}\}$.		
8.	Write down the power set of the following sets.		
	(i) $A = \{a, b\}$ (ii) $B = \{1, 2, 3\}$ (iii) $D = \{p, q, r, s\}$ (iv) $E = \emptyset$		
Sol.	(i) The subsets of A are \emptyset , $\{a\}$, $\{b\}$, $\{a, b\}$		
	The power set of A		
	$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$		
	(ii) The subsets of B are ϕ , {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}		
	The power set of B $P(D) = (D - D) = (D - D) = (D - D) = (D - D)$		
	$P(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$ (iii) The subset of D are \emptyset (n) (a) (r) (s) (n a) (n r) (n s) (a r) (a s)		
	(iii) The subset of D are \mathcal{D} , $\{p\}$, $\{q\}$, $\{r\}$, $\{s\}$, $\{p, q\}$, $\{p, r\}$, $\{p, s\}$, $\{q, r\}$, $\{q, s\}$, $\{r, s\}$, $\{p, q, r\}$, $\{q, r, s\}$, $\{p, r, s\}$, $\{p, q, s\}$, $\{p, q, r\}$, $\{p, q, r\}$, $\{q, r\}$, $\{q$		
	The power set of D		
	$P(D) = \{\emptyset, \{p\}, \{q\}, \{r\}, \{s\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, r\}, \{q, s\}, \{r, s$		
	${p, q, r}, {q, r, s}, {p, r, s}, {p, q, s}, {p, q, r, s}$		
	(iv) The power set of E		
	$P(E) = \{ \}.$		
9.	Find the number of subsets and the number of proper subsets of the following sets.		
	(i) W={red,blue,yellow} (ii) X ={ $x^2 : x \in \mathbb{N}, x^2 \le 100$ }.		
Sol.	(i) Given $W = \{red, blue, yellow\}$		
	Then $n(W) = 3$		
	The number of subsets $= n[P(W)] = 2^3 = 8$		
	The number of proper subsets = $n[P(W)] - 1 = 2^3 - 1 = 8 - 1 = 7$		

This is Only for Sample for Full Book order Online or Available at All Leading Bookstores

8 Sura's O Mathematics - 9th Std O Chapter 1 O Set Language (ii) Given X = $\{1, 2, 3, \dots\}$ $X^2 = \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$ n(X) = 10The Number of subsets = $n[P(X)] = 2^{10} = 1024$ The Number of proper subsets = $n[P(X)]-1 = 2^{10} - 1 = 1024 - 1 = 1023$. (i) If n(A) = 4, find n[P(A)]. [QY-2019] (ii) If n(A) = 0, find n[P(A)]. 10. (iii) If n[P(A)] = 256, find n(A). **Sol.** (i) n(A) = 4 $n[P(A)] = 2^n = 2^4 = 16$ (ii) n(A) = 0 $n[P(A)] = 2^0 = 1$ n[P(A)] = 256(iii) 2 256 2 || 28 2 64 2 32 2 |16 2 18 24 2 2 1 n[P(A)] = 2^{8} $\therefore n(A) =$ 8. **Exercise 1.7 MULTIPLE CHOICE QUESTIONS:** 1. Which of the following is correct? (1) $\{7\} \in \{1,2,3,4,5,6,7,8,9,10\}$ (2) $7 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (3) $7 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (4) $\{7\} \not\subseteq \{1,2,3,4,5,6,7,8,9,10\}$ [Ans. (2) $7 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$] 2. The set $P = \{x \mid x \in \mathbb{Z}, -1 \le x \le 1\}$ is a (1) Singleton set (2) Power set (3) Null set (4) Subset **Hint** : $P = \{0\}$ [Ans. (1) Singleton set] 3. If $U = \{x \mid x \in \mathbb{N}, x < 10\}$ and $A = \{x \mid x \in \mathbb{N}, 2 \le x < 6\}$ then (A')' is $(1) \{1,6,7,8,9\}$ (b) $\{1,2,3,4\}$ (c) $\{2,3,4,5\}$ (d) $\{ \}$ **Hint**: $(A') = A = \{2, 3, 4, 5\}$ [Ans. (3) {2,3,4,5}] If $B \subset A$ then $n(A \cap B)$ is 4. (1) n(A - B)(3) n(B - A)(2) *n*(B) (4) n(A)**Hint**: $B \subseteq A \Rightarrow A \cap B = B$ [Ans. (2) *n*(B)]

5.	If $A = \{x, y, z\}$ then	the number of no	on-empty subsets of A is	[HY-2019]
	(1) 8	(2) 5	(3) 6	(4) 7
	Hint: Number	of non-empty subs	ets = 2 - 1 = 8 - 1 = 7	[Ans. (4) 7]
6.	Which of the follo	wing is correct ?		
	(1) $\emptyset \subseteq \{a, b\}$	(2) $\emptyset \in \{a,$	$b\}$ (3) $\{a\} \in \{a, b\}$	$(4) a \subseteq \{a, b\}$
	Hint : Empty se	et is an improper su	ıbset	$[Ans. (1) \varnothing \subseteq \{a, b\}]$
7.	If $A \cup B = A \cap B$, th	en		
	(1) $A \neq B$	(2) A = B	$(4) \mathbf{A} \subset \mathbf{B}$	$(4) \mathbf{B} \subset \mathbf{A}$
				[Ans. (2) A = B]
8.	If $B - A$ is B , the	n A∩B is		[QY-2019] 🔅
	(1) A	(2) B	(3) U	(4) Ø
0	Hint: $B - A = H$	$B \Rightarrow A and B are d$	isjoint sets.	[Ans. (4) \varnothing]
9.	(1) S	nt diagram $n[P(x)]$		$A \xrightarrow{B} U$
	(1) 8 (3) 32	(2) 10 (4) 64		$50 \begin{pmatrix} 30 \\ 85 \end{pmatrix} \begin{pmatrix} 30 \\ 20 \end{pmatrix} \begin{pmatrix} 90 \\ 70 \end{pmatrix}$
	Hint: $A \Delta B =$	{ 60, 85, 75, 90, 70)}	75 20 70 65
	$\Rightarrow n(A \Delta)$	$(\mathbf{B}) = 5$,	
	$\Rightarrow n(\mathbf{P})$	$(A \Delta B)) = 2^5 = 32$		[Ans. (3) 32]
10.	If $n(\mathbf{A}) = 10$ and $n(\mathbf{A})$	(B) = 15, then the	minimum and maximum	number of elements in A \cap B
	(1) (10,15)	(2) (15,10)	(3) (10,0)	$(4) (0,10) \\ [Ans. (4) (0,10)]$
11	Let $\mathbf{A} = \{\emptyset\}$ and	$\mathbf{R} = \mathbf{P}(\mathbf{A})$ then \mathbf{A}	$\cap \mathbf{B}$ is	
		$(2) (\alpha)$		(4) (0)
	$(1) \{ \emptyset, \{\emptyset\} \}$	$(2) \{\emptyset\}$	$(3) \otimes$	(4) {0}
	Hint : $P(A) = \{ g \in A \}$	Ø{Ø}}		[Ans. (2) {Ø}]
12.	In a class of 50 bo boys play both ga	ys, 35 boys play mes is	Carom and 20 boys play	Chess then the number of <i>[HY-2019]</i>
	(1) 5	(2) 30	(3) 15	(4) 10
	Hint : $n(A \cup B)$	$= n(\mathbf{A}) + n(\mathbf{B}) - n(\mathbf{A})$	$(A \cap B) \Longrightarrow 50 = 35 + 20 - n(A \cap B)$	$(A \cap B) \Longrightarrow n(A \cap B) = 5$
				[Ans. (1) 5]
13.	If U = $\{x : x \in \mathbb{N} \}$ and	nd $x < 10$ }, A ={1,	2, 3, 5, 8} and B = {2, 5, 6	, 7, 9}, then <i>n</i> [(A∪B)′] is
	(1) 1	(2) 2	(3) 4	(4) 8
	Hint: $U =$ A = B = $A \cup B =$ $(A \cup B)' =$	$\{1, 2, 3, 4, 5, 6, 7, \\\{1, 2, 3, 5, 8\}\\\{2, 5, 6, 7, 9\}\\\{1, 2, 3, 5, 6, 7, 8, \\\{4\}, \}$, 8, 9} , 9}	
	$n (A \cup B)' =$	1		[Ans. (1) 1]

10

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

[HY-2019] 🔅 14. For any three sets P, Q and R, $P-(Q \cap R)$ is (1) $P = (Q \cup R)$ (2) $(P \cap Q) - R$ (3) $(P - O) \cup (P - R)$ (4) $(P-Q) \cap (P-R)$ **Hint**: $P - (Q \cap R) = (P - Q) \cup (P - R)$ [Ans. (3) $(P - Q) \cup (P - R)$] Which of the following is true? 15. (1) $A-B = A \cap B$ (2) A - B = B - A $(4) \quad (A \cap B)' = A' \cup B'$ (3) $(A \cup B)' = A' \cup B'$ **Hint**: (1) $(A-B) = A \cap B$ х A - B = B - A(2)х $(3) \qquad (A \cup B)' = A' \cup B'$ x $(A \cap B)' = A' \cup B' \quad \checkmark$ (4) [Ans. (4) $(A \cap B)' = A' \cup B'$] If $n(A \cup B \cup C) = 100$, n(A) = 4x, n(B) = 6x, n(C) = 5x, $n(A \cap B) = 20$, $n(B \cap C) = 15$, 16. $n(A \cap C)=25$ and $n(A \cap B \cap C)=10$, then the value of x is (3) 25 (4) 30 (1) 10 (2) 15 Hint : $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$ 100 = 4x + 6x + 5x - 20 - 15 - 25 + 10100 = 15x - 60 + 10100 = 15x - 50 $\therefore 15x = 100 + 50 = 150$ x = 10[Ans. (1) 10] 17. For any three sets A, B and C, $(A - B) \cap (B - C)$ is equal to *[OY-2019]* (3) C only (1) A only (2) B only (4) \$ **Hint**: $(A - B) \cap (B - C)$ is equal to ϕ [Ans. (4) **\operatorname{4}**] 18. If J = Set of three sided shapes, K = Set of shapes with two equal sides and L = Set of shapes with right angle, then $J \cap K \cap L$ is (1) Set of isoceles triangles (2) Set of equilateral triangles (3) Set of isoceles right triangles (4) Set of right angled triangles $J = \{ \bigtriangleup, \bigstar, \smile \}$ Hint: $\mathbf{K} = \{ \underbrace{\mathbf{k}} \}$ $L = \{ f \} \}$ [Ans. (3) Set of isoceles right triangles] The shaded region in the Venn diagram is 19. (1) $Z - (X \cup Y)$ $(2)(X \cup Y) \cap Z$ (3) $Z - (X \cap Y)$ (4) $Z \cup (X \cap Y)$ **Hint**: $Z - (X \cap Y)$ [Ans. (3) $Z - (X \cap Y)$]

20. In a city, 40% people like only one fruit, 35% people like only two fruits, 20% people like all the three fruits. How many percentage of people do not like any one of the above three fruits?

Activity - 1

1. Discuss and give as many examples of collections from your daily life situations, which are sets and which are not sets.

Sol. Which are sets

(i) Collection of pen

- (ii) Collection of dolls
- (iii) Collection of books (
- (iv) Collection of red flower etc.

Which are not sets

- (i) Collection of good students in a class.
- (ii) Collection of beautiful flowers in a garden etc.

Activity - 2

Write the following sets in respective forms.

Sol.	S. No	Descriptive Form	Set Builder Form	Roster Form
	1	The set of all natural numbers less than 10	A = { x : x is a natural number less than 10}	A = {1, 2, 3, 4, 5, 6, 7, 8, 9}
	2	The set of all positive integers which are multiples of 3	$\{x : x \text{ is a multiple of } 3, x \in \mathbb{N}\}$	{3, 6, 9, 12,18}
	3	The set of all natural even numbers. Less than 12	$\mathbb{N} = \{x : x \text{ is a natural even} $ number, $x < 12\}$	{2,4,6,8,10}
	4	The set of all days in a week.	X = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}	$X = \{x : x \text{ is a day in a week}\}$
	5	The set of all Integers	$\mathbf{A} = \{x : x \text{ is an on Integer}\}\$	{3,-2,-1,0,1,2,3}

Government Exam Questions

2 Marks

1. Write the set of letters of the following words in Roster form : [HY-2019] (i) ASSESSMENT (ii) PRINCIPAL Sol. (i) ASSESSMENT (ii) PRINCIPAL $X = \{A, S, E, M, N, T\}$ $Y = \{P, R, I, N, C, A, L\}$ 2. Find the number of subsets and number of proper subsets of a set $X = \{a, b, c, x, y, z\}$. Sol. Given X = $\{a, b, c, x, y, z\}$. \otimes Then, n(X) = 6The number of subsets = $n[P(X)] = 2^6 = 64$ The number of proper subsets = $n[P(X)] - 1 = 2^6 - 1 = 64 - 1 = 63$ 3. If $A = \{a, b, c, d, e\}$ and $B = \{a, e, i, o, u\}$ find $A \cap B$.

Sol. $A \cap B = \{a, b, c, d, e\} \cap \{a, e, i, o, u\} = \{a, e\}$

**

12